220 research outputs found

    Towards 5D Grand Unification without SUSY Flavor Problem

    Full text link
    We consider the renormalization group approach to the SUSY flavor problem in the supersymmetric SU(5) model with one extra dimension. In higher dimensional SUSY gauge theories, it has been recently shown that power corrections due to the Kaluza-Klein states of gauge fields run the soft masses generated at the orbifold fixed point to flavor conserving values in the infra-red limit. In models with GUT breaking at the brane where the GUT scale can be larger than the compactification scale, we show that the addition of a bulk Higgs multiplet, which is necessary for the successful unification, is compatible with the flavor universality achieved at the compactification scale.Comment: JHEP style file of 35 pages with 3 figures, Version to appear in JHE

    Adrenal venous sampling for stratifying patients for surgery of adrenal nodules detected using dynamic contrast enhanced CT

    Get PDF
    PURPOSEWe aimed to assess the value of adrenal venous sampling (AVS) for diagnosing primary aldosteronism (PA) subtypes in patients with a unilateral nodule detected on adrenal computed tomography (CT) and scheduled for adrenalectomy. MATERIALS AND METHODSThis retrospective study included 80 consecutive patients with PA undergoing CT and AVS. Different lateralization indices were assessed, and a cutoff established using receiver operating characteristic curve analysis. The value of CT alone versus CT with AVS for differentiating PA subtypes was compared. The adrenalectomy outcome was assessed, and predictors of cure were determined using univariate analysis. RESULTSAVS was successful in 68 patients. A cortisol-corrected aldosterone affected-to-unaffected ratio cutoff of 2.0 and affected-to-inferior vena cava ratio cutoff of 1.4 were the best lateralization indices, with accuracies of 82.5% and 80.4%, respectively. CT and AVS diagnosed 38 patients with aldosterone-producing adenomas, five patients with unilateral adrenal hyperplasia, and 25 patients with bilateral adrenal hyperplasia. Of the 52 patients with a nodule detected on CT, subsequent AVS diagnosed bilateral adrenal hyperplasia in 14 patients (27%). Compared to the results of combining CT with AVS, the accuracy of CT alone for diagnosing aldosterone-producing adenomas was 71.1% (P < 0.001). The cure rate for hypertension after adrenalectomy was 39.2%, with improvement in 53.5% of patients. On univariate analysis, predictors of persistent hypertension were male gender and preoperative systolic blood pressure. CONCLUSIONTo avoid inappropriate surgery, AVS is necessary for diagnosing unilateral nodules with aldosterone hypersecretion detected by CT

    Bimodal Mesoporous Titanium Nitride/Carbon Microfibers as Efficient and Stable Electrocatalysts for Li–O_2 Batteries

    Get PDF
    The rechargeable Li–O_2 battery has been considered as a sustainable chemical power source for electric vehicles and grid energy storage systems due to the high theoretical specific energy (∼3500 Wh/kg). The practical performance of Li–O_2 batteries is, however, still far below expectations. This is mainly attributed to the (1) intrinsic sluggish reaction kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), (2) passivation of the electrodes by electrical isolation and pore blocking, and (3) chemical instability of the organic cell components, i.e., electrolyte, polymer binder, and carbon electrode, in the presence of O_2•– and Li_2O_2. It is crucial to develop highly porous, three-dimensional, conducting cathode catalyst/gas diffusion layer (GDL) architectures possessing superior catalytic activity and stability with respect to the ORR and the OER in order to address these issues. All of these requirements prompted us to examine the catalytic performance of porous framework metal nitride electrodes for Li–O_2 batteries

    Risk of all-cause and cause-specific mortality associated with immune-mediated inflammatory diseases in Korea

    Get PDF
    ObjectiveImmune-mediated inflammatory disease (IMID) is associated with an increased risk of mortality. It is unclear whether the higher mortality is attributable to the IMIDs themselves or to the higher prevalence of comorbidities in IMIDs. We aimed to investigate whether IMIDs per se confer a higher risk of mortality.MethodsFrom the Korean National Health Insurance Service-National Sample Cohort database, this population-based cohort study included 25,736 patients newly diagnosed with IMIDs between January 2007 and December 2017, and 128,680 individuals without IMIDs who were matched for age, sex, income, hypertension, type 2 diabetes, dyslipidemia, and the Charlson comorbidity index. All individuals were retrospectively observed through December 31, 2019. The outcomes included all-cause and cause-specific mortalities. Adjustments for age, sex, and comorbidities were performed using multivariable Cox proportional hazard regression analyses, and adjusted hazard ratios (aHRs) with 95% confidence intervals (CIs) for the outcomes were estimated.ResultsThe adjusted risk of all-cause mortality was significantly lower in patients with IMIDs than that in those without (aHR, 0.890; 95% CI, 0.841–0.942). Regarding cause-specific mortality, cancer-specific (aHR, 0.788; 95% CI, 0.712–0.872) and cardiovascular disease-specific (aHR, 0.798; 95% CI, 0.701–0.908) mortalities were the two causes of death that showed significantly lower risks in patients with IMIDs. A similar trend was observed when organ based IMIDs were analyzed separately (i.e., gut, joint, and skin IMIDs).ConclusionAfter adjusting for comorbidities, IMIDs were associated with a lower risk of all-cause mortality compared to those without IMIDs. This was attributable to the lower risks of cancer-and cardiovascular disease-specific mortalities

    Iron Insufficiency Compromises Motor Neurons and Their Mitochondrial Function in Irp2-Null Mice

    Get PDF
    Genetic ablation of Iron Regulatory Protein 2 (Irp2, Ireb2), which post-transcriptionally regulates iron metabolism genes, causes a gait disorder in mice that progresses to hind-limb paralysis. Here we have demonstrated that misregulation of iron metabolism from loss of Irp2 causes lower motor neuronal degeneration with significant spinal cord axonopathy. Mitochondria in the lumbar spinal cord showed significantly decreased Complex I and II activities, and abnormal morphology. Lower motor neurons appeared to be the most adversely affected neurons, and we show that functional iron starvation due to misregulation of iron import and storage proteins, including transferrin receptor 1 and ferritin, may have a causal role in disease. We demonstrated that two therapeutic approaches were beneficial for motor neuron survival. First, we activated a homologous protein, IRP1, by oral Tempol treatment and found that axons were partially spared from degeneration. Secondly, we genetically decreased expression of the iron storage protein, ferritin, to diminish functional iron starvation. These data suggest that functional iron deficiency may constitute a previously unrecognized molecular basis for degeneration of motor neurons in mice

    Derivation of an endogenous small RNA from double-stranded Sox4 sense and natural antisense transcripts in the mouse brain

    Get PDF
    Natural antisense transcripts (NATs) are involved in cellular development and regulatory processes. Multiple NATs at the Sox4 gene locus are spatiotemporally regulated throughout murine cerebral corticogenesis. In the study, we evaluated the potential functional role of Sox4 NATs at Sox4 gene locus. We demonstrated Sox4 sense and NATs formed dsRNA aggregates in the cytoplasm of brain cells. Over expression of Sox4 NATs in NIH/3T3 cells generally did not alter the level of Sox4 mRNA expression or protein translation. Upregulation of a Sox4 NAT known as Sox4ot1 led to the production of a novel small RNA, Sox4_sir3. Its biogenesis is Dicer1-dependent and has characteristics resemble piRNA. Expression of Sox4_sir3 was observed in the marginal and germinative zones of the developing and postnatal brains suggesting a potential role in regulating neurogenesis. We proposed that Sox4 sense-NATs serve as Dicer1-dependent templates to produce a novel endo-siRNA- or piRNA-like Sox4_sir3

    Mechanosensitive activation of K+ channel via phospholipase C-induced depletion of phosphatidylinositol 4,5-bisphosphate in B lymphocytes

    Get PDF
    In various types of cells mechanical stimulation of the plasma membrane activates phospholipase C (PLC). However, the regulation of ion channels via mechanosensitive degradation of phosphatidylinositol 4,5-bisphosphate (PIP(2)) is not known yet. The mouse B cells express large conductance background K(+) channels (LK(bg)) that are inhibited by PIP(2). In inside-out patch clamp studies, the application of MgATP (1 mm) also inhibited LK(bg) due to the generation of PIP(2) by phosphoinositide (PI)-kinases. In the presence of MgATP, membrane stretch induced by negative pipette pressure activated LK(bg), which was antagonized by PIP(2) (> 1 microm) or higher concentration of MgATP (5 mm). The inhibition by PIP(2) was partially reversible. However, the application of methyl-beta-cyclodextrin, a cholesterol scavenger disrupting lipid rafts, induced the full recovery of LK(bg) activity and facilitated the activation by stretch. In cell-attached patches, LK(bg) were activated by hypotonic swelling of B cells as well as by negative pressure. The mechano-activation of LK(bg) was blocked by U73122, a PLC inhibitor. Neither actin depolymerization nor the inhibition of lipid phosphatase blocked the mechanical effects. Direct stimulation of PLC by m-3M3FBS or by cross-linking IgM-type B cell receptors activated LK(bg). Western blot analysis and confocal microscopy showed that the hypotonic swelling of WEHI-231 induces tyrosine phosphorylation of PLCgamma2 and PIP(2) hydrolysis of plasma membrane. The time dependence of PIP(2) hydrolysis and LK(bg) activation were similar. The presence of LK(bg) and their stretch sensitivity were also proven in fresh isolated mice splenic B cells. From the above results, we propose a novel mechanism of stretch-dependent ion channel activation, namely, that the degradation of PIP(2) caused by stretch-activated PLC releases LK(bg) from the tonic inhibition by PIP(2)

    In depth analysis of the Sox4 gene locus that consists of sense and natural antisense transcripts

    Get PDF
    SRY (Sex Determining Region Y)-Box 4 or Sox4 is an important regulator of the pan-neuronal gene expression during post-mitotic cell differentiation within the mammalian brain. Sox4 gene locus has been previously characterized with multiple sense and overlapping natural antisense transcripts [1] and [2]. Here we provide accompanying data on various analyses performed and described in Ling et al. [2]. The data include a detail description of various features found at Sox4 gene locus, additional experimental data derived from RNA-Fluorescence in situ Hybridization (RNA-FISH), Western blotting, strand-specific reverse-transcription quantitative polymerase chain reaction (RT-qPCR), gain-of-function and in situ hybridization (ISH) experiments. All the additional data provided here support the existence of an endogenous small interfering- or PIWI interacting-like small RNA known as Sox4_sir3, which origin was found within the overlapping region consisting of a sense and a natural antisense transcript known as Sox4ot1
    corecore