125 research outputs found
Mass Determination in SUSY-like Events with Missing Energy
We describe a kinematic method which is capable of determining the overall
mass scale in SUSY-like events at a hadron collider with two missing (dark
matter) particles. We focus on the kinematic topology in which a pair of
identical particles is produced with each decaying to two leptons and an
invisible particle (schematically, followed by each
decaying via where is invisible). This topology
arises in many SUSY processes such as squark and gluino production and decay,
not to mention t\anti t di-lepton decays. In the example where the final
state leptons are all muons, our errors on the masses of the particles ,
and in the decay chain range from 4 GeV for 2000 events after cuts to 13
GeV for 400 events after cuts. Errors for mass differences are much smaller.
Our ability to determine masses comes from considering all the kinematic
information in the event, including the missing momentum, in conjunction with
the quadratic constraints that arise from the , and mass-shell
conditions. Realistic missing momentum and lepton momenta uncertainties are
included in the analysis.Comment: 41 pages, 14 figures, various clarifications and expanded discussion
included in revised version that conforms to the version to be publishe
Dark matter allowed scenarios for Yukawa-unified SO(10) SUSY GUTs
Simple supersymmetric grand unified models based on the gauge group SO(10)
require --in addition to gauge and matter unification-- the unification of
t-b-\tau Yukawa couplings. Yukawa unification, however, only occurs for very
special values of the soft SUSY breaking parameters. We perform a search using
a Markov Chain Monte Carlo (MCMC) technique to investigate model parameters and
sparticle mass spectra which occur in Yukawa-unified SUSY models, where we also
require the relic density of neutralino dark matter to saturate the
WMAP-measured abundance. We find the spectrum is characterizd by three mass
scales: first/second generation scalars in the multi-TeV range, third
generation scalars in the TeV range, and gauginos in the \sim 100 GeV range.
Most solutions give far too high a relic abundance of neutralino dark matter.
The dark matter discrepancy can be rectified by 1. allowing for neutralino
decay to axino plus photon, 2. imposing gaugino mass non-universality or 3.
imposing generational non-universality. In addition, the MCMC approach finds 4.
a compromise solution where scalar masses are not too heavy, and where
neutralino annihilation occurs via the light Higgs h resonance. By imposing
weak scale Higgs soft term boundary conditions, we are also able to generate 5.
low \mu, m_A solutions with neutralino annihilation via a light A resonance,
though these solutions seem to be excluded by CDF/D0 measurements of the B_s\to
\mu^+\mu^- branching fraction. Based on the dual requirements of Yukawa
coupling unification and dark matter relic density, we predict new physics
signals at the LHC from pair production of 350--450 GeV gluinos. The events are
characterized by very high b-jet multiplicity and a dilepton mass edge around
mz2-mz1 \sim 50-75 GeV.Comment: 35 pages with 21 eps figure
The Law of Society: Governance Through Contract
This paper focuses on contract law as a central field in contemporary regulatory practice. In recent years, governance by contract has emerged as the central concept in the context of domestic privatization, domestic and transnational commercial relations and law-and-development projects. Meanwhile, as a result of the neo-formalist attack on contract law, governance of contract through contract adjudication, consumer protection law and judicial intervention into private law relations has come under severe pressure. Building on early historical critique of the formalist foundations of an allegedly private law of the market, the paper assesses the current justifications for contractual governance and posits that only an expanded legal realist perspective can adequately explain the complex nature of contractual agreements in contemporary practice. The paper argues for an understanding of contracts as complex societal arrangements that visibilize and negotiate conflicting rationalities and interests. Institutionally, contractual governance has been unfolding in a complex, historically grown and ideologically continually contested regulatory field. Governance through contract, then, denotes a wide field of conflicting concepts, ideas and symbols, that are themselves deeply entrenched in theories of society, market and the state. From this perspective, we are well advised to study contracts in their socio-economic, historical and cultural context. A careful reading of scholars such as Henry Sumner Maine, Morris Cohen, Robert Hale, Karl Llewellyn, Stewart Macaulay and Ian Macneil offers a deeper understanding of the institutional and normative dimensions of contractual governance. Their analysis is particularly helpful in assessing currently ongoing shifts away from a welfare state based regulation (governance) of contractual relations. Such shifts are occurring on two levels. First, they take place against the backdrop of a neo-liberal critique of government interference into allegedly private relations. Secondly, the increasingly influential return to formalism in contract law, which privileges a functionalist, purportedly technical and autonomous design and execution of contractual agreements over the view of regulated contracts, is linked to a particular concept of sovereignty. The ensuing revival of freedom of contract occurs in remarkable neglect of the experiences of welfare state adjudication of private law adjudication and a continuing contestation of the political in private relationships. The paper takes up the Legal Realists\u27 search for the \u27basis of contract\u27, but seeks to redirect the focus from the traditional perspective on state vs. market to a disembedded understanding of contractual governance as delineating multipolar and multirational regulatory regimes. Where Globalization has led to a fragmentation, disembeddedness and transnationalization of contexts and, thus, has been challenging traditional understanding of embeddedness, the task should no longer be to try applying a largely nation-state oriented Legal Realist perspective and critique to the sphere of contemporary contractual governance, but - rather - to translate its aims into a more reflexive set of instruments of legal critique. Even if Globalization has led to a dramatic denationalization of many regulatory fields and functions, it is still not clear, whether and how Globalization replaces, complements or aggravates transformations of societal governance, with and through contract
Collider and Dark Matter Phenomenology of Models with Mirage Unification
We examine supersymmetric models with mixed modulus-anomaly mediated SUSY
breaking (MM-AMSB) soft terms which get comparable contributions to SUSY
breaking from moduli-mediation and anomaly-mediation. The apparent (mirage)
unification of soft SUSY breaking terms at Q=mu_mir not associated with any
physical threshold is the hallmark of this scenario. The MM-AMSB structure of
soft terms arises in models of string compactification with fluxes, where the
addition of an anti-brane leads to an uplifting potential and a de Sitter
universe, as first constructed by Kachru {\it et al.}. The phenomenology mainly
depends on the relative strength of moduli- and anomaly-mediated SUSY breaking
contributions, and on the Higgs and matter field modular weights, which are
determined by the location of these fields in the extra dimensions. We
delineate the allowed parameter space for a low and high value of tan(beta),
for a wide range of modular weight choices. We calculate the neutralino relic
density and display the WMAP-allowed regions. We show the reach of the CERN LHC
and of the International Linear Collider. We discuss aspects of MM-AMSB models
for Tevatron, LHC and ILC searches, muon g-2 and b->s \gamma branching
fraction. We also calculate direct and indirect dark matter detection rates,
and show that almost all WMAP-allowed models should be accessible to a
ton-scale noble gas detector. Finally, we comment on the potential of colliders
to measure the mirage unification scale and modular weights in the difficult
case where mu_mir>>M_GUT.Comment: 34 pages plus 42 EPS figures; version with high resolution figures is
at http://www.hep.fsu.edu/~bae
Mixed Higgsino Dark Matter from a Reduced SU(3) Gaugino Mass: Consequences for Dark Matter and Collider Searches
In gravity-mediated SUSY breaking models with non-universal gaugino masses,
lowering the SU(3) gaugino mass |M_3| leads to a reduction in the squark and
gluino masses. Lower third generation squark masses, in turn, diminish the
effect of a large top quark Yukawa coupling in the running of the higgs mass
parameter m_{H_u}^2, leading to a reduction in the magnitude of the
superpotential mu parameter (relative to M_1 and M_2). A low | mu | parameter
gives rise to mixed higgsino dark matter (MHDM), which can efficiently
annihilate in the early universe to give a dark matter relic density in accord
with WMAP measurements. We explore the phenomenology of the low |M_3| scenario,
and find for the case of MHDM increased rates for direct and indirect detection
of neutralino dark matter relative to the mSUGRA model. The sparticle mass
spectrum is characterized by relatively light gluinos, frequently with
m(gl)<<m(sq). If scalar masses are large, then gluinos can be very light, with
gl->Z_i+g loop decays dominating the gluino branching fraction. Top squarks can
be much lighter than sbottom and first/second generation squarks. The presence
of low mass higgsino-like charginos and neutralinos is expected at the CERN
LHC. The small m(Z2)-m(Z1) mass gap should give rise to a visible
opposite-sign/same flavor dilepton mass edge. At a TeV scale linear e^+e^-
collider, the region of MHDM will mean that the entire spectrum of charginos
and neutralinos are amongst the lightest sparticles, and are most likely to be
produced at observable rates, allowing for a complete reconstruction of the
gaugino-higgsino sector.Comment: 35 pages, including 26 EPS figure
Using kinematic boundary lines for particle mass measurements and disambiguation in SUSY-like events with missing energy
We revisit the method of kinematical endpoints for particle mass
determination, applied to the popular SUSY decay chain squark -> neutralino ->
slepton -> LSP. We analyze the uniqueness of the solutions for the mass
spectrum in terms of the measured endpoints in the observable invariant mass
distributions. We provide simple analytical inversion formulas for the masses
in terms of the measured endpoints. We show that in a sizable portion of the
SUSY mass parameter space the solutions always suffer from a two-fold
ambiguity, due to the fact that the original relations between the masses and
the endpoints are piecewise-defined functions. The ambiguity persists even in
the ideal case of a perfect detector and infinite statistics. We delineate the
corresponding dangerous regions of parameter space and identify the sets of
"twin" mass spectra. In order to resolve the ambiguity, we propose a
generalization of the endpoint method, from single-variable distributions to
two-variable distributions. In particular, we study analytically the boundaries
of the (m_{jl(lo)}, m_{jl(hi)}) and (m_{ll}, m_{jll}) distributions and prove
that their shapes are in principle sufficient to resolve the ambiguity in the
mass determination. We identify several additional independent measurements
which can be obtained from the boundary lines of these bivariate distributions.
The purely kinematical nature of our method makes it generally applicable to
any model that exhibits a SUSY-like cascade decay.Comment: 47 pages, 19 figure
- …