23 research outputs found

    Can Brain Drain Justify Immigration Restrictions?

    Full text link

    Characterizing preclinical sub-phenotypic models of acute respiratory distress syndrome:An experimental ovine study

    Get PDF
    Abstract The acute respiratory distress syndrome (ARDS) describes a heterogenous population of patients with acute severe respiratory failure. However, contemporary advances have begun to identify distinct sub‐phenotypes that exist within its broader envelope. These sub‐phenotypes have varied outcomes and respond differently to several previously studied interventions. A more precise understanding of their pathobiology and an ability to prospectively identify them, may allow for the development of precision therapies in ARDS. Historically, animal models have played a key role in translational research, although few studies have so far assessed either the ability of animal models to replicate these sub‐phenotypes or investigated the presence of sub‐phenotypes within animal models. Here, in three ovine models of ARDS, using combinations of oleic acid and intravenous, or intratracheal lipopolysaccharide, we investigated the presence of sub‐phenotypes which qualitatively resemble those found in clinical cohorts. Principal Component Analysis and partitional clustering identified two clusters, differentiated by markers of shock, inflammation, and lung injury. This study provides a first exploration of ARDS phenotypes in preclinical models and suggests a methodology for investigating this phenomenon in future studies

    A clinically relevant sheep model of orthotopic heart transplantation 24 h after donor brainstem death

    Get PDF
    BACKGROUND: Heart transplantation (HTx) from brainstem dead (BSD) donors is the gold-standard therapy for severe/end-stage cardiac disease, but is limited by a global donor heart shortage. Consequently, innovative solutions to increase donor heart availability and utilisation are rapidly expanding. Clinically relevant preclinical models are essential for evaluating interventions for human translation, yet few exist that accurately mimic all key HTx components, incorporating injuries beginning in the donor, through to the recipient. To enable future assessment of novel perfusion technologies in our research program, we thus aimed to develop a clinically relevant sheep model of HTx following 24 h of donor BSD. METHODS: BSD donors (vs. sham neurological injury, 4/group) were hemodynamically supported and monitored for 24 h, followed by heart preservation with cold static storage. Bicaval orthotopic HTx was performed in matched recipients, who were weaned from cardiopulmonary bypass (CPB), and monitored for 6 h. Donor and recipient blood were assayed for inflammatory and cardiac injury markers, and cardiac function was assessed using echocardiography. Repeated measurements between the two different groups during the study observation period were assessed by mixed ANOVA for repeated measures. RESULTS: Brainstem death caused an immediate catecholaminergic hemodynamic response (mean arterial pressure, p = 0.09), systemic inflammation (IL-6 - p = 0.025, IL-8 - p = 0.002) and cardiac injury (cardiac troponin I, p = 0.048), requiring vasopressor support (vasopressor dependency index, VDI, p = 0.023), with normalisation of biomarkers and physiology over 24 h. All hearts were weaned from CPB and monitored for 6 h post-HTx, except one (sham) recipient that died 2 h post-HTx. Hemodynamic (VDI - p = 0.592, heart rate - p = 0.747) and metabolic (blood lactate, p = 0.546) parameters post-HTx were comparable between groups, despite the observed physiological perturbations that occurred during donor BSD. All p values denote interaction among groups and time in the ANOVA for repeated measures. CONCLUSIONS: We have successfully developed an ovine HTx model following 24 h of donor BSD. After 6 h of critical care management post-HTx, there were no differences between groups, despite evident hemodynamic perturbations, systemic inflammation, and cardiac injury observed during donor BSD. This preclinical model provides a platform for critical assessment of injury development pre- and post-HTx, and novel therapeutic evaluation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40635-021-00425-4

    The Effect of Mass Azithromycin Distribution on Childhood Mortality: Beliefs and Estimates of Efficacy.

    No full text
    A cluster-randomized trial demonstrated that mass oral azithromycin distribution reduced childhood mortality 49.6% (Trachoma Amelioration in Northern Amhara [TANA]). The relative risk of childhood mortality was then estimated using two approaches: an expert survey and a Bayesian analysis. The survey asked public health experts to estimate the true effect of mass azithromycin distribution on childhood mortality. The Bayesian estimation used the TANA study's results and prior estimates of the efficacy of other effective population-level interventions. The experts believed mass azithromycin reduces childhood mortality (relative risk = 0.83, 95% credible intervals [CrI] = 0.70-1.00). The Bayesian analysis estimated a relative risk of 0.71 (95% CrI = 0.39-0.93). Both estimates suggest that azithromycin may have a true mortality benefit, though of a smaller magnitude than found in the single available trial. Prior information about nonantibiotic, population-level interventions may have informed the expert's opinions. Additional trials are needed to confirm a mortality benefit from mass azithromycin
    corecore