219 research outputs found

    Quantum Revivals in a Periodically Driven Gravitational Cavity

    Get PDF
    Quantum revivals are investigated for the dynamics of an atom in a driven gravitational cavity. It is demonstrated that the external driving field influences the revival time significantly. Analytical expressions are presented which are based on second order perturbation theory and semiclassical secular theory. These analytical results explain the dependence of the revival time on the characteristic parameters of the problem quantitatively in a simple way. They are in excellent agreement with numerical results

    Z-Decays to b Quarks and the Higgs Boson Mass

    Get PDF
    A model independent analysis of the most recent averages of precision electroweak data from LEP and SLD finds a 3σ\sigma deviation of the parameter AbA_b from the Standard Model prediction. The fitted value of mHm_H shows a strong dependence on the inclusion or exclusion of b quark data, and the Standard Model fits have poor confidence levels of a few percent when the latter are included. The good fits obtained to lepton data, c quark data and the directly measured top quark mass, give mt=171.2−3.8+3.7m_t = 171.2_{-3.8}^{+3.7} GeV and indicate that the Higgs boson mass is most likely less than 200 GeV.Comment: 15 pages, 3 figures, 6 table

    Charged Particles in a 2+1 Curved Background

    Full text link
    The coupling to a 2+1 background geometry of a quantized charged test particle in a strong magnetic field is analyzed. Canonical operators adapting to the fast and slow freedoms produce a natural expansion in the inverse square root of the magnetic field strength. The fast freedom is solved to the second order. At any given time, space is parameterized by a couple of conjugate operators and effectively behaves as the `phase space' of the slow freedom. The slow Hamiltonian depends on the magnetic field norm, its covariant derivatives, the scalar curvature and presents a peculiar coupling with the spin-connection.Comment: 22 page

    Next to leading order spin-orbit effects in the motion of inspiralling compact binaries

    Full text link
    Using effective field theory (EFT) techniques we calculate the next-to-leading order (NLO) spin-orbit contributions to the gravitational potential of inspiralling compact binaries. We use the covariant spin supplementarity condition (SSC), and explicitly prove the equivalence with previous results by Faye et al. in arXiv:gr-qc/0605139. We also show that the direct application of the Newton-Wigner SSC at the level of the action leads to the correct dynamics using a canonical (Dirac) algebra. This paper then completes the calculation of the necessary spin dynamics within the EFT formalism that will be used in a separate paper to compute the spin contributions to the energy flux and phase evolution to NLO.Comment: 25 pages, 4 figures, revtex4. v2: minor changes, refs. added. To appear in Class. Quant. Gra

    Resolved Photon Processes

    Get PDF
    We review the present level of knowledge of the hadronic structure of the photon, as revealed in interactions involving quarks and gluons ``in" the photon. The concept of photon structure functions is introduced in the description of deep--inelastic eγe \gamma scattering, and existing parametrizations of the parton densities in the photon are reviewed. We then turn to hard \gamp\ and \gaga\ collisions, where we treat the production of jets, heavy quarks, hard (direct) photons, \jpsi\ mesons, and lepton pairs. We also comment on issues that go beyond perturbation theory, including recent attempts at a comprehensive description of both hard and soft \gamp\ and \gaga\ interactions. We conclude with a list of open problems.Comment: LaTeX with equation.sty, 85 pages, 29 figures (not included). A complete PS file of the paper, including figures, can be obtained via anonymous ftp from ftp://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-898.ps.

    The prognostic significance of allelic imbalance at key chromosomal loci in oral cancer

    Get PDF
    Forty-eight primary oral squamous cell carcinomas (SCC) were screened for allelic imbalance (AI) at 3p24–26, 3p21, 3p13, 8p21–23, 9p21, 9q22 and within the Rb, p53 and DCC tumour suppressor genes. AI was detected at all TNM stages with stage 4 tumours showing significantly more aberrations than stage 1–3. A factional allelic loss (FAL) score was calculated for all tumours and a high score was associated with development of local recurrence (P = 0.033) and reduced survival (P = 0.0006). AI at one or more loci within the 3p24–26, 3p21, 3p13 and 9p21 regions or within the THRB and DCC genes was associated with reduced survival. The hazard ratios for survival analysis revealed that patients with AI at 3p24–26, 3p13 and 9p21 have an approximately 25 times increase in their mortality rate relative to a patient retaining heterozygosity at these loci. AI at specific pairs of loci, D3S686 and D9S171 and involving at least two of D3S1296, DCC and D9S43, was a better predictor of prognosis than the FAL score or TNM stage. These data suggest that it will be possible to develop a molecular staging system which will be a better predict of outcome than conventional clinicopathological features as the molecular events represent fundamental biological characteristics of each tumour. © 1999 Cancer Research Campaig
    • …
    corecore