88 research outputs found

    Conversion of waste plastics into fuels: Recycling polyethylene in FCC

    Get PDF
    Low density polyethylene was dissolved into toluene and converted at 500 °C over three different commercial FCC catalysts in a laboratory Riser Simulator reactor. Short reaction-times up to 12 s were used. All the catalysts had qualitatively similar behaviors. The specific contribution of the polymer to the product slate of FCC was centered in hydrocarbons in the range of gasoline, with high aromatic content and highly olefinic C3–C4 gases. Saturated C4–C5 products were mainly isoparaffins. The additional coke formed by the polymer would make coke yields to increase moderately in relation to the standard operation. These facts confirmed that this recycling option, which is based on a proven technology, represents an interesting alternative to solve a major environmental problem.Fil: de la Puente, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; ArgentinaFil: Klocker, C.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; ArgentinaFil: Sedran, Ulises Anselmo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentin

    FCC Matrix Components and Their Combination with Y Zeolite to Enhance the Deoxygenation of Bio-oils

    Get PDF
    The immediate catalytic conversions of pyrolytic bio-oils from pine sawdust and soybean shell over mesoporous catalysts (silica, alumina, and silica-alumina) and their combinations with Y zeolite, were studied. The effect of mesoporosity and acidity on the bio-oil deoxygenation and conversion into hydrocarbons was investigated. Pyrolysis and immediate catalytic conversion of bio-oil were performed in an integrated pyrolysis–upgrading reactor, for 7 min under a 30-ml/min flow of nitrogen at 550 °C. Important differences were observed in the conversion of the bio-oils, according to the composition of the raw biomasses. Pine sawdust bio-oil produced more coke and less hydrocarbons in the range of gasoline than soybean shell bio-oil over all the catalysts. Mesoporous catalysts showed conversion and deoxygenation between 14 and 29 percentage points higher with the more acidic solid (SiO2-Al2O3) in the case of pine sawdust bio-oil and between 2 and 10 percentage points higher with the solid having the highest specific surface area (SiO2) in the case of soybean shell bio-oil. Among the compound catalysts, the best performance for the case of pine sawdust corresponded to the catalyst with the highest mesoporosity (Y/SiO2), while for soybean shell corresponded to the most acidic catalysts (Y/Al2O3 and Y/SiO2-Al2O3). Soybean shell bio-oil showed more low molecular weight compounds (less than 130 g mol−1), which diffuse more easily in the zeolite channels, thus favoring conversion and deoxygenation mechanisms. On the contrary, for pine sawdust bio-oil, the surface area contributed by the mesopores in the matrix played a key role in pre-cracking bulky molecules.Fil: Bertero, Melisa Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: García, Juan Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Falco, Marisa Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Sedran, Ulises Anselmo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentin

    The influence on selectivity of the aluminum content in the matrix of FCC catalysts

    Get PDF
    The influence that both the type of matrix and the interaction between zeolite and matrix have on the selectivity of FCC catalysts was studied by means of the conversion of cyclohexene at 300 ◦C on a large number of samples in which the matrix was changed. Silica/alumina matrices had 0, 12 and 25% of alumina, and catalysts were subjected to steaming of varying severity followed by acid extraction in some samples to remove extraframework aluminum species (EFAl). Resulting  catalysts were characterized by various techniques. It was confirmed that hydrogen transfer does not depend directly on the type of coordination of the aluminum atoms in the sample, but rather on the density of paired sites in the zeolite component. It was possible to define the selectivity of reaction pathways (SRP) as an index to describe the relative importance of the processes ofdesorption via hydride transfer to yield cyclohexane against retention of the cation cyclohexil via isomerization and further reaction. A high value of SRP would mean that a given catalyst has a lower ability to retain adsorbed species that can be subjected to additional reactions like, in this particular reaction, isomerization and further proton transfer to the catalyst surface, or cracking. The index was shown to increase whereas the relative amount of octahedral aluminum atoms decreased, a fact that can be associated to the formation of a new silica/alumina phase. Such phase would be formed by means of the reaction of aluminum extracted from the zeolite upon steaming and silica present in the matrix.Fil: de la Puente, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; ArgentinaFil: Falabella Sousa Aguiar, Eduardo. Centro de Pesquisas-Petrobras; BrasilFil: Figueiredo Costa, Alexandre. Centro de Pesquisas-Petrobras; BrasilFil: Sedran, Ulises Anselmo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentin

    Limitations in the energy balance when VGO/aqueous bio-oil mixtures are co-processed in FCC units

    Get PDF
    The effect on the energy balance of a FCC unit after co-feeding the aqueous fraction of a bio-oil together with a vacuum gas oil (VGO) has been studied. The simulation program considers the interdependency relationship between the reaction and regeneration sections in the unit, where the heat of coke combustion has to sustain the energy requirements to preheat and vaporize the feedstock as well as the endothermic cracking reactions. The combustion of coke deposited on an equilibrium commercial FCC catalyst in cracking various bio-oil/VGO mixtures at 530 degrees C, with catalyst to oil relationships between 3 and 6 in a CREC Riser Simulator laboratory reactor, was investigated by means of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Results showed that the heat from coke combustion is not enough to provide the energy needed in the unit when the amount of bio-oil in the feedstock is larger than 5 wt%, mainly due to the high content of water in the aqueous fraction of the bio-oil and to the lower heat of combustion of the coke formed in co-processing, as compared to the VGO alone.This work has been carried out with the financial support of the Ministry of Science, Innovation and Universities (MICIU) of the Spanish Government (grant RTI2018-096981-B-I00) , the European Union's ERDF funds and Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Actions (grant No 823745) and the Basque Government (grant IT1645-22) . The financial support of the Universidad Nacional del Litoral (UNL, Santa Fe, Argentina) , Proj. CAID 50420150100068LI, and Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT) , PICT 1208/2016 is gratefully acknowledged

    Bio-composite Films Based on Alginate and Rice Husk Tar Microparticles Loaded with Eugenol for Active Packaging

    Get PDF
    This work focused on the valorization of tar derived from rice husk pyrolysis as a precursor of matrices for the encapsulation of active principles. In this regard, the development of novel films based on alginate and eugenol-loaded tar microparticles with suitable mechanical properties and antibacterial activity was studied. Tar microparticles loaded with eugenol were incorporated into sodium alginate films and the effect on the mechanical, thermal and humidity resistance properties were determined, as well as the antimicrobial activity. Films with different crosslinking degrees were also prepared using CaCl2, and the eugenol controlled release profiles were evaluated. Crosslinked films exhibited improved mechanical and humidity resistance properties, as well as a lower release rate of eugenol in water. The antimicrobial studies showed that eugenol-loaded films present a higher antimicrobial activity against Staphylococcus aureus. Alginate/eugenol-loaded tar microparticles composites showed an enhancement of antibacterial properties and suitable physical characteristics to be used in active packaging applications.Fil: Taverna, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. Universidad Tecnológica Nacional. Facultad Reg.san Francisco. Departamento de Ingeniería Química; ArgentinaFil: Busatto, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Saires, Paula Judith. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Bertero, Melisa Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Sedran, Ulises Anselmo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Estenoz, Diana Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentin

    Enhancing the performance of a PtPd/HY catalyst for HDPE/VGO hydrocracking through zeolite desilication

    Get PDF
    The valorization of post-consumer waste plastic in a refinery is an attractive initiative to avoid environmental problems caused by the poor plastic waste management. The modification of a bifunctional PtPd/HY catalyst through desilication (using NaOH) of the ultrastable HY zeolite has been carried out to upgrade waste plastic (high-density polyethylene (HDPE)) dissolved in a secondary refinery stream (vacuum gas oil (VGO)) through hydrocracking. Three different catalysts have been studied: the parent (Cat-A), undergoing a desilication cycle (Cat-B), and subjected to two cycles of desilication (Cat-C). The characterization techniques employed have been: N2 adsorption-desorption, TEM, ICP-AES, tert-butylamine-TPD, pyridine FTIR, WDXRF, XRD and TPO. The hy-drocracking tests have been carried out in a semi-batch reactor at: 440 C; 80 bar; catalyst to feed ratio, 0.1 g(cat) (g(feed))(-1); HDPE to feed ratio, 0.2 gHDPE (g(feed))(-1); and reaction time, 2 h. The products have been fractioned ac-cording to their boiling point range in: gas, naphtha, light cycle oil, heavy cycle oil and coke. The composition of each fraction has been determined in terms of concentration of paraffins, olefins, naphthenes and (mono-, di-and poly-) aromatics. The results show that alkaline treated catalysts enhance the fuel production, with high HDPE and HCO conversions. The Cat-C (the one submitted to two desilication cycles) has displayed the greatest per-formance, reducing by half the gas yield and increasing the naphtha yield by 51 wt% respect to those obtained with the parent catalyst (Cat-A). Moreover, it has decreased the coke deposition and the coke formed has been less developed.This work has been carried out with financial support of the Ministry of Science, Innovation and Universities (MICIU) of the Spanish Government (grant RTI2018-096981-B-I00), the European Union's ERDF funds and Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Actions (grant No 823745) and the Basque Government (grant IT645-22). Dr. Roberto Palos thanks the University of the Basque Country UPV/EHU for his postdoctoral grant (UPV/EHU 2019). Dr. Juan Rafael García thanks the Carolina Foundation (Fundación Carolina, Spain) and the Ministry of Education, Presidency of the Nation (Ministerio de Educación, Presidencia de la Nación, Argentina) for his postdoctoral fellowship (Programa de Becas Internacionales de la Dirección Nacional de Cooperación Internacional (DNCI), Becas de estancias cortas FC-Ministerio de Educación, 2018-2019). The authors thank for the technical and human support provided by SGIker of UPV/EHU and European funding (ERDF and ESF). The authors also acknowledge Petronor Refinery for providing the feed used in this work

    Yield of aromatics from naphthenics upon catalytic cracking

    Get PDF
    Cis- e trans decalina foram submetidas à reação com catalisadores de craqueamento, para estudar a formação de aromáticos numa fração particular de produtos líquidos do processo de craqueamento catalítico fluido (FCC). Um reator batelada em leito fluidizado, CREC, foi usado a 673 e 723 K com tempos de contato entre 3 e 15 s. Cis-decalina foi muito mais reativa. Apesar de diferenças induzidas e medidas na acessibilidade dos catalisadores, seus perfis de atividade foram similares, sugerindo que restrições difusionais não prevalecem. Os produtos foram hidrocarbonetos C1-C12, enquanto o coque foi muito baixo. Reações de isomerização, craqueamento, transferência de hidrogênio, abertura/contração de anel e alquilação ocorreram, e produtos das várias reações foram observados em tempos de reação muito baixos. Naftênicos bicíclicos C10 e aromáticos alquil-substituídos C7-C11 ou nafteno-aromáticos foram os produtos mais importantes. Um mecanismo de reação com três rotas iniciais (isomerização, abertura de anel e reações de transferência de hidrogênio) foi proposto. _________________________________________________________________________________________ ABSTRACT: Cis- and trans-decalin were reacted over cracking catalysts to study the formation of aromatics in a particular fraction of the liquid products obtained in the fluid catalytic cracking process (FCC). A batch, fluidized bed CREC riser simulator reactor was used at 673 and 723 K and contact times varied from 3 to 15 s. Cis-decalin was much more reactive. Despite differences induced and measured in their accessibility indices, the catalysts led to similar activity profiles, suggesting that diffusion restrictions do not prevail. Products were C1-C12 hydrocarbons while coke was very low. Isomerization, cracking, hydrogen transfer, ring opening, ring contraction and alkylation reactions occurred and products from the various reactions were observed at very short reaction times. Bicyclic C10 naphthenics and alkyl-substituted C7-C11 aromatics or naphtheno-aromatics were the most important products. A reaction mechanism with three initial routes (isomerization, ring opening and direct hydrogen transfer reactions) was proposed
    corecore