9 research outputs found

    Peroxide-based route for the synthesis of zinc titanate powder

    Get PDF
    In this work the thermodynamical solubility diagrams of zinc and titanium hydroxides were reviewed in order to determine the conditions for maximum degree of phase composition homogenization of precipitates. Experimental investigation of dependency of titanium peroxohydroxide solubility on solution acidity has been carried out and coprecipitation of zinc ions has been studied. It was concluded that precipitation by constant addition of mixed salts and base solutions into the mother liquor with constant acidity of pH 8.5 allows maximizing homogenization of precipitate composition. Thermal treatment process of mixed zinc and titanium hydroxides coprecipitated with hydrogen peroxide was studied using thermogravimetric analysis, differential thermal analysis and X-ray diffraction methods. It was found that precipitates of co-precipitated mixtures of zinc and titanium hydroxides contained impurities of salts precursors of the Zn (NO3)2 and TiOCl2 at a level of 1%. The experimental data demonstrate the influence of hydrogen peroxide on crystal growth rate of the zinc titanate during thermal treatment. The temperature ranges and kinetic parameters of hydroxide mixture dehydration, decomposition of the titanium peroxohydroxide and precursor impurities were determined

    āļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™āđāļĨāļ°āļāļēāļĢāļŦāļēāđāļ™āļ§āđ€āļžāļ·āđˆāļ­āļĨāļ”āļāļēāļĢāļ›āļĨāđˆāļ­āļĒāļāđŠāļēāļ‹āđ€āļĢāļ·āļ­āļ™āļāļĢāļ°āļˆāļāļˆāļēāļāļāļģāļˆāļąāļ”āļ‹āļēāļ āđāļœāļ‡āđ‚āļ‹āļĨāļēāļĢāđŒāđ€āļ‹āļĨāļĨāđŒāļ āļēāļĒāļŦāļĨāļąāļ‡āļŦāļĄāļ”āļ­āļēāļĒāļļāļāļēāļĢāđƒāļŠāđ‰āļ‡āļēāļ™āļŠāļģāļŦāļĢāļąāļšāļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒAssessment and Approach to Reduce Greenhouse Gas Emissions from End of Life Solar Panel Waste for Thailand

    No full text
    āļāļēāļĢāļāļģāļˆāļąāļ”āļ‹āļēāļāđāļœāļ‡āđ‚āļ‹āļĨāļēāļĢāđŒāđ€āļ‹āļĨāļĨāđŒāļ–āļ·āļ­āđ€āļ›āđ‡āļ™āļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļˆāļģāđ€āļ›āđ‡āļ™āđƒāļ™āļāļēāļĢāđƒāļŠāđ‰āđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļžāļĨāļąāļ‡āļ‡āļēāļ™āđāļŠāļ‡āļ­āļēāļ—āļīāļ•āļĒāđŒ āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āđ„āļ”āđ‰āļ—āļģāļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™āļāļēāļĢāļ›āļĨāđˆāļ­āļĒāļāđŠāļēāļ‹āđ€āļĢāļ·āļ­āļ™āļāļĢāļ°āļˆāļāđƒāļ™āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļāļģāļˆāļąāļ”āļ‹āļēāļāđāļœāļ‡āđ‚āļ‹āļĨāļēāļĢāđŒāđ€āļ‹āļĨāļĨāđŒāļ•āļēāļĄāļŦāļĨāļąāļāļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™āļ§āļąāļāļˆāļąāļāļĢāļŠāļĩāļ§āļīāļ•āđ‚āļ”āļĒāļžāļīāļˆāļēāļĢāļ“āļēāļ–āļķāļ‡āļāļēāļĢāļ‚āļ™āļŠāđˆāļ‡ āļāļēāļĢāļ„āļąāļ”āđāļĒāļ āđāļĨāļ°āļāļēāļĢāļĢāļĩāđ„āļ‹āđ€āļ„āļīāļĨāđ€āļžāļ·āđˆāļ­āđ„āļ”āđ‰āļ„āļ·āļ™āļ§āļąāļŠāļ”āļļāļˆāļēāļāđāļœāļ‡āđ‚āļ‹āļĨāļēāļĢāđŒāđ€āļ‹āļĨāļĨāđŒ āđ€āļĄāļ·āđˆāļ­āļ›āļĢāļ°āđ€āļĄāļīāļ™āļāļēāļĢāļŠāđˆāļ‡āđāļœāļ‡āđ‚āļ‹āļĨāļēāļĢāđŒāđ€āļ‹āļĨāļĨāđŒāļ—āļĩāđˆāļŦāļĄāļ”āļ­āļēāļĒāļļāļāļēāļĢāđƒāļŠāđ‰āļ‡āļēāļ™āđ„āļ›āļāļģāļˆāļąāļ”āđƒāļ™āļ›āļĢāļ°āđ€āļ—āļĻāļāļĩāđˆāļ›āļļāđˆāļ™āđ€āļĢāļĩāļĒāļāļ§āđˆāļēāļāļēāļĢāļāļģāļˆāļąāļ”āļ‹āļēāļāđāļšāļšāļ—āļąāđˆāļ§āđ„āļ› (Conv.) āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāđ€āļ›āđ‡āļ™āļ§āļīāļ˜āļĩāļ—āļĩāđˆāļ™āļīāļĒāļĄāđƒāļŠāđ‰āđƒāļ™āļ›āļąāļˆāļˆāļļāļšāļąāļ™ āļĄāļĩāļ„āđˆāļēāļāļēāļĢāļ›āļĨāđˆāļ­āļĒāļāđŠāļēāļ‹āđ€āļĢāļ·āļ­āļ™āļāļĢāļ°āļˆāļ 8.6370 kgCO2eq/āđāļœāļ‡ āđ‚āļ”āļĒāđāļšāđˆāļ‡āļ­āļ­āļāđ€āļ›āđ‡āļ™āļŠāļ­āļ‡āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ„āļ·āļ­āļāļēāļĢāļ‚āļ™āļŠāđˆāļ‡ 2.1295 kgCO2eq/āđāļœāļ‡ āđāļĨāļ°āļāļēāļĢāļĢāļĩāđ„āļ‹āđ€āļ„āļīāļĨ 6.5075 kgCO2eq/āđāļœāļ‡ āđ€āļžāļ·āđˆāļ­āļ‚āļĒāļēāļĒāđāļ™āļ§āļ—āļēāļ‡āļāļģāļˆāļąāļ”āļ‹āļēāļāļœāļđāđ‰āļ§āļīāļˆāļąāļĒāļˆāļķāļ‡āđ„āļ”āđ‰āđ€āļžāļīāđˆāļĄāļŠāļ–āļēāļ™āļāļēāļĢāļ“āđŒāđƒāļ™āļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™ 4 āļŠāļ–āļēāļ™āļāļēāļĢāļ“āđŒāļ„āļ·āļ­ āļāļēāļĢāļĨāļ”āļ āļēāļĢāļ°āļ™āđ‰āļģāļŦāļ™āļąāļāđƒāļ™āļāļēāļĢāļ‚āļ™āļŠāđˆāļ‡āđ‚āļ”āļĒāļ„āļąāļ”āđāļĒāļāļ­āļ‡āļ„āđŒāļ›āļĢāļ°āļāļ­āļšāļ‚āļ­āļ‡āđāļœāļ‡āđ‚āļ‹āļĨāļēāļĢāđŒāđ€āļ‹āļĨāļĨāđŒāļāđˆāļ­āļ™āļŠāđˆāļ‡āđ„āļ›āļāļģāļˆāļąāļ”āļĒāļąāļ‡āļ›āļĢāļ°āđ€āļ—āļĻāļāļĩāđˆāļ›āļļāđˆāļ™ (Sc1) āļāļēāļĢāļāļģāļˆāļąāļ”āļ‹āļēāļāđ‚āļ”āļĒāđ‚āļĢāļ‡āļ‡āļēāļ™āļĢāļĩāđ„āļ‹āđ€āļ„āļīāļĨāđƒāļ™āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ (Sc2) āļāļēāļĢāđāļĒāļāļ­āļ‡āļ„āđŒāļ›āļĢāļ°āļāļ­āļšāļ‚āļ­āļ‡āđāļœāļ‡āđ‚āļ‹āļĨāļēāļĢāđŒāđ€āļ‹āļĨāļĨāđŒāļāđˆāļ­āļ™āļ™āļģāđ„āļ›āļāļģāļˆāļąāļ”āļĒāļąāļ‡āđ‚āļĢāļ‡āļ‡āļēāļ™āļĢāļĩāđ„āļ‹āđ€āļ„āļīāļĨāđƒāļ™āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ (Sc3) āļāļēāļĢāđāļĒāļāļ­āļ‡āļ„āđŒāļ›āļĢāļ°āļāļ­āļšāđāļĨāļ°āļāļģāļˆāļąāļ”āļ‹āļēāļāđƒāļ™āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒāđ‚āļ”āļĒāđ‚āļĢāļ‡āļ‡āļēāļ™āļĢāļĩāđ„āļ‹āđ€āļ„āļīāļĨāđƒāļŠāđ‰āļžāļĨāļąāļ‡āļ‡āļēāļ™āļ—āļ”āđāļ—āļ™āļŠāļģāļŦāļĢāļąāļšāļāļēāļĢāļœāļĨāļīāļ•āđ„āļŸāļŸāđ‰āļē (Sc4) āļĄāļĩāļ„āđˆāļēāļāļēāļĢāļ›āļĨāđˆāļ­āļĒāļāđŠāļēāļ‹āđ€āļĢāļ·āļ­āļ™āļāļĢāļ°āļˆāļ 6.3826 kgCO2eq/āđāļœāļ‡, 8.7892 kgCO2eq/āđāļœāļ‡, 6.0445 kgCO2eq/āđāļœāļ‡ āđāļĨāļ° 4.5811 kgCO2eq/āđāļœāļ‡ āļ•āļēāļĄāļĨāļģāļ”āļąāļš āļžāļšāļ§āđˆāļē Sc4 āļŠāļēāļĄāļēāļĢāļ–āļĨāļ”āļāļēāļĢāļ›āļĨāđˆāļ­āļĒāļāđŠāļēāļ‹āđ€āļĢāļ·āļ­āļ™āļāļĢāļ°āļˆāļāļˆāļēāļāļāļēāļĢāļāļģāļˆāļąāļ”āļ‹āļēāļāđāļšāļš Conv. āđ„āļ”āđ‰āļ–āļķāļ‡āļĢāđ‰āļ­āļĒāļĨāļ° 46.96 āļ—āļąāđ‰āļ‡āļ™āļĩāđ‰āđ€āļžāļ·āđˆāļ­āļžāļąāļ’āļ™āļēāļāļēāļĢāļ§āļēāļ‡āđāļœāļ™āļāļģāļˆāļąāļ”āļ‹āļēāļāđāļœāļ‡āđ‚āļ‹āļĨāļēāļĢāđŒāđ€āļ‹āļĨāļĨāđŒāđƒāļ™āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒāđƒāļŦāđ‰āļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļ„āļ§āļĢāļĄāļĩāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđ€āļ—āļ„āļ™āļīāļ„āļāļēāļĢāļĢāļĩāđ„āļ‹āđ€āļ„āļīāļĨāļ—āļĩāđˆāļŦāļĨāļēāļāļŦāļĨāļēāļĒāļĒāļīāđˆāļ‡āļ‚āļķāđ‰āļ™Solar panel waste management is an important step for the utilization of solar technology. This research evaluated the greenhouse gas emissions based on the life cycle assessment. The transportation, waste sorting and recycling to recover materials from solar panels have been considered. Greenhouse gas assessment for disposal of used solar panels in Japan is called the conventional disposal (Conv.) because it is commonly used in the moment. The result showed that the total greenhouse gases released from the conventional disposal was 8.6370 kgCO2eq/module which can be divided into two factors, 2.1295 kgCO2eq/module for the transportation and 6.5075 kgCO2eq/module for the recycling process. To expand the approach of waste management, therefore, the researcher increased more four scenarios which were: Sc1: reduction of the transport weight by separating the elements of the solar panels before shipping to Japan, Sc2: disposal of solar wastes in Thailand by the local recycling plant, Sc3: solar panel disassembly before delivering to a recycling facility in Thailand, and Sc4: disassembling and disposing the components in Thailand by the recycling plant that used renewable energy for electricity generation. The greenhouse gas evaluation of four scenarios were 6.3826 kgCO2eq/module, 8.7892 kgCO2eq/module, 6.0445 kgCO2eq/module and 4.5811 kgCO2eq/module, respectively. It was found that Sc4 could reduce greenhouse gas emissions from Conv. by 46.96%. To develop the effective planning for solar panel waste management in Thailand, the analysis of various recycling techniques should be conducted in further research

    Association between ambient air particulate matter and human health impacts in northern Thailand

    No full text
    Abstract Air pollution in Thailand is regarded as a serious health threat, especially in the northern region. High levels of particulate matter (PM2.5 and PM10) are strongly linked to severe health consequences and mortality. This study analyzed the relationship between exposure to ambient concentrations of PM2.5 and PM10 by using data from the Pollution Control Department of Thailand and the burden of disease due to an increase in the ambient particulate matter concentrations in northern Thailand. This study was conducted using the Life Cycle Assessment methodology considering the human health damage impact category in the ReCiPe 2016 method. The results revealed that the annual average years of life lived with disability from ambient PM2.5 in northern Thailand is about 41,372 years, while from PM10 it is about 59,064 years per 100,000 population. The number of deaths from lung cancer and cardiopulmonary diseases caused by PM2.5 were approximately 0.04% and 0.06% of the population of northern Thailand, respectively. Deaths due to lung cancer and cardiopulmonary diseases caused by PM10, on the other hand, were approximately 0.06% and 0.08%, respectively. The findings expressed the actual severity of the impact of air pollution on human health. It can provide valuable insights for organizations in setting strategies to address air pollution. Organizations can build well-informed strategies and turn them into legal plans by exploiting the study’s findings. This ensures that their efforts to tackle air pollution are successful, in accordance with regulations, and contribute to a healthier, more sustainable future guidelines on appropriate practices of air pollution act/policy linkage with climate change mitigation
    corecore