26 research outputs found

    Crystal structure of barium oxonitridophosphate, Ba3P6O6N8

    Get PDF
    Ba3N8O6P6, trigonal, P3 (no. 147), a = 7.40227(9) Å, c = 6.3144(1) Å, V = 299.6 Å3, Z = 1, R(I) = 0.008, R(P) = 0.041, T = 297(2) K

    Template-free inorganic synthesis of silica-based nanotubes and their self-assembly to mesocrystals

    Get PDF
    A novel synthesis approach for silica-based nanotubes (NTs) was discovered in the purely inorganic system containing the molecular compounds OP(NH2)3, SP(NH2)3 and SiCl4 in evacuated and sealed silica glass ampoules. Without any solvent or structure directing template the amorphous NTs self-organise to form orthogonally ordered, 3D hyperbranched mesocrystals, exhibiting an interesting material for nanofluidic device applications

    Unprecedented Zeolite-Like Framework Topology Constructed from Cages with 3-Rings in a Barium Oxonitridophosphate

    Get PDF
    A novel oxonitridophosphate, Ba19P36O6+xN66-xCl8+x(x≈4.54), has been synthesized by heating a multicomponent reactant mixture consisting of phosphoryl triamide OP(NH2)3, thiophosphoryl triamide SP(NH2)3, BaS, and NH4Cl enclosed in an evacuated and sealed silica glass ampule up to 750°C. Despite the presence of side phases, the crystal structure was elucidated ab initio from high-resolution synchrotron powder diffraction data (λ=39.998 pm) applying the charge flipping algorithm supported by independent symmetry information derived from electron diffraction (ED) and scanning transmission electron microscopy (STEM). The compound crystallizes in the cubic space group Fm3c (no. 226) with a = 2685.41(3) pm and Z = 8. As confirmed by Rietveld refinement, the structure comprises all-side vertex sharing P(O,N)4 tetrahedra forming slightly distorted 3846812 cages representing a novel composite building unit (CBU). Interlinked through their 4-rings and additional 3-rings, the cages build up a 3D network with a framework density FD = 14.87 T/1000 Å3 and a 3D 8-ring channel system. Ba2+ and Clˉ as extra-framework ions are located within the cages and channels of the framework. The structuralmodel is corroborated by 31P double-quantum(DQ) /single-quantum (SQ) and triple-quantum (TQ) /single-quantum (SQ) 2D correlation MAS NMR spectroscopy. According to 31P{1H} C-REDOR NMR measurements, the H content is less than one H atom per unit cell

    Intercalation effect on hyperfine parameters of Fe in FeSe superconductor with Tc = 42 K

    Full text link
    57Fe-Mossbauer spectra of superconducting beta-FeSe, the Li/NH3 intercalate product and a subsequent sample of this intercalate treated with moist He gas have been measured in temperature range 4.7 - 290 K. A correlation is established between hyperfine parameters and critical temperature Tc in these phases. A strong increase of isomer shift upon intercalation is explained by a charge transfer from the Li/NH3 intercalate to the FeSe layers resulting in an increase of Tc up to 42 K. A significant decrease of the quadrupole splitting above 240 K has been attributed to diffusive motion of Li+ ions within the interlamellar space.Comment: 6 pages, 5 figures, 1 tabl

    Editors\u27 Choice—Understanding Chemical Stability Issues between Different Solid Electrolytes in All-Solid-State Batteries

    Get PDF
    Sulfide-based solid electrolytes (SE) are quite attractive for application in all-solid-state batteries (ASSB) due to their high ionic conductivities and low grain boundary resistance. However, limited chemical and electrochemical stability demands for protection on both cathode and anode side. One promising concept to prevent unwanted reactions and simultaneously improve interfacial contacting at the anode side consists in applying a thin polymer film as interlayer between Li metal and the SE. In the present study, we investigated the combination of polyethylene oxide (PEO) based polymer films with the sulfide-based SE Li10SnP2S12 (LSPS). We analyzed their compatibility using both electrochemical and chemical techniques. A steady increase in the cell resistance during calendar aging indicated decomposition reactions at the interfaces. By means of X-ray photoelectron spectroscopy and further analytical methods, the formation of polysulfides, P–[S]n–P like bridged PS43− units and sulfite, SO32−, was demonstrated. We critically discuss potential reasons and propose a plausible mechanism for the degradation of LSPS with PEO. The main objective of this paper is to highlight the importance of understanding interfaces in ASSBs not only from an electrochemical perspective, but also from a chemical point of view

    Slurry-Based Processing of Solid Electrolytes: A Comparative Binder Study

    Get PDF
    Limited energy density of today\u27s Li-ion battery technologies demands for novel cell technologies, such as the all-solid-state battery (ASSB). In order to achieve high energy densities and enable large-scale processing, thin and flexible solid electrolyte (SE) layers have to be implemented. This study focuses on slurry-based processing of the sulfidic solid electrolyte Li10_{10}SnP2_{2}S12_{12} (LSPS). Various polymers were investigated concerning their suitability as binders for thin and freestanding SE sheets. We conducted a parameter study in order to optimize e.g. LSPS-to-binder ratio, solids content and porosity. Significant differences were found with regard to the minimum amount of binder required for mechanically stable sheets as well as the homogeneity, density and flexibility of the resulting SE layers. The impacts of binder type and weight fraction on ionic conductivity were examined through lithium diffusion measurements. Impedance analysis was conducted in comparison, proving sufficiently high ionic conductivity for potential application of the SE sheets in ASSB. This work highlights the important role of the polymeric binder in slurry-based processing of SEs and gives an impression how important a well-considered selection of parameters is to achieve good processing properties as well as desirable features for the final SE sheet

    Soft Chemical Control of Superconductivity in Lithium Iron Selenide Hydroxides Li1–x_{1–x}Fex_x(OH)Fe1–y_{1–y}Se

    Get PDF
    Hydrothermal synthesis is described of layered lithium iron selenide hydroxides Li1–x_{1–x}Fex(OH)Fe1–y_{1–y}Se (x∌\sim0.2; 0.02 < yy < 0.15) with a wide range of iron site vacancy concentrations in the iron selenide layers. This iron vacancy concentration is revealed as the only significant compositional variable and as the key parameter controlling the crystal structure and the electronic properties. Single crystal X-ray diffraction, neutron powder diffraction, and X-ray absorption spectroscopy measurements are used to demonstrate that superconductivity at temperatures as high as 40 K is observed in the hydrothermally synthesized samples when the iron vacancy concentration is low (yy < 0.05) and when the iron oxidation state is reduced slightly below +2, while samples with a higher vacancy concentration and a correspondingly higher iron oxidation state are not superconducting. The importance of combining a low iron oxidation state with a low vacancy concentration in the iron selenide layers is emphasized by the demonstration that reductive postsynthetic lithiation of the samples turns on superconductivity with critical temperatures exceeding 40 K by displacing iron atoms from the Li1–x_{1–x}Fex_x(OH) reservoir layer to fill vacancies in the selenide layer
    corecore