© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of barium oxonitridophosphate, Ba₃P₆O₆N₈

Stefan J. Sedlmaier, Daniel Weber and Wolfgang Schnick*

Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 (D), 81377 Munich, Germany

Received October 11, 2011, accepted and available on-line January 16, 2012; CSD no. 710077

Abstract

Ba₃N₈O₆P₆, trigonal, $P\overline{3}$ (no. 147), a = 7.40227(9) Å, c = 6.3144(1) Å, V = 299.6 Å³, Z = 1, R(I) = 0.008, R(P) = 0.041, T = 297(2) K.

Source of material

 $Ba_3P_6O_6N_8$ was synthesized by a high-pressure, high-temperature reaction from $Ba(N_3)_2$ and amorphous PON in a Walker-type multi-anvil assembly. A finely ground mixture (ratio $Ba(N_3)_2$: PON = 1 : 2; approx. 50 mg) was placed into a capsule made of hexagonal boron nitride and compressed in a MgO octahedron with an edge length of 18 mm. At 6 GPa the sample was heated over 15 min to about 920 °C. This temperature was maintained for 15 min, and finally the sample was cooled down to room temperature over 30 min. Further details concerning the assembly are described in [1]. $Ba_3P_6O_6N_8$ was obtained as a light gray, air- and water stable, microcrystalline solid. **Experimental details**

A Rietveld refinement was performed starting from the atomic parameters of isotypic $Sr_3P_6O_6N_8$. Preferred orientation of the crystallites was described with a spherical harmonics function of 4^{th} order. Displacement parameters of atoms N/O have been constrained to one common value.

Discussion

A few years ago, the Ba₃Si₆O₁₂N₂:Eu²⁺ and its solid solution series $Ba_{3-x}Sr_xSi_6O_{12}N_2$ have been discovered as efficient green phosphors for phosphor-converted light-emitting diodes [2,3]. Just shortly before, the structure type of this silicate compound, however, was elucidated for the oxonitridophosphate Sr₃P₆O₆N₈ [4]. It exhibits a highly condensed layered structure. $Sr_3P_6O_6N_8$ was successfully synthesized by transfering the so-called azide high-pressure synthesis route to the P/O/N system. This synthesis route was originally applied for the preparation of nitridophosphates in combination with P_3N_5 [5,6]. The benefits of reacting a metal azide with P₃N₅ in the closed system at high pressure are that the respective metal nitride is generated in-situ while simultaneously the decomposition of P₃N₅ is suppressed by the high nitrogen partial pressure. By employing this method using amorphous PON as starting material, we were able to synthesize $Sr_3P_6O_6N_8$ and by now also $Ba_3P_6O_6N_8.$ According to the pressure-homologue rule, the higher homologue Ba₃P₆O₆N₈ can also be generated at lower pressures such as 4 GPa. As for Si/O/N, however, evidence for a calcium homologue ($Ca_3P_6O_6N_8$) is not existent, not even at higher pressures.

The crystal structure of $Ba_3P_6O_6N_8$ consists of two-dimensional layer anions $[P_6O_6N_8]^{6-}$ parallel (001) and Ba^{2+} ions in-between. The anions are composed of vertex-sharing Q³-type P(ON₃) tetrahedra, which form condensed 4- and 6-rings with twofold and threefold N atoms involved within the layer. The O atoms are bound terminally. The bond lengths P—N were determined to 159.1 and 166.4 pm (to N2) and 172.5 pm (to N3). As expected, the bond length d(P-O1) = 144.9 pm is significantly shorter. The Ba^{2+} ions are 10-fold coordinated by four N (d(Ba-N) = 295.4 pm and 297.3 pm) and six O atoms (283.0, 293.1 pm), and 12-fold by 6 N (272.2 pm) and 6 O atoms (345.0 pm), respectively.

^{*} Correspondence author (e-mail: wolfgang.schnick@uni-muenchen.de)

Table 1. Data collection and handling.

Powder:	light gray			
Wavelength:	Mo $K_{\alpha 1}$ radiation (0.70930 Å)			
μ:	10.6 cm^{-1}			
Diffractometer:	STOE STADI P			
$2\theta_{\text{max}}$, stepwidth:	60.0, 0.01°			
N(points) _{measured} :	5800			
N(hkl) _{measured} :	604			
N(param) _{refined} :	68			
Programs:	TOPAS [7], DIAMOND [8]			

Acknowledgments. We gratefully acknowledge financial support that was granted by the Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie (scholarship for S. J. Sedlmaier).

References

- Huppertz, H.: Multianvil high-pressure high-temperature synthesis in solid state chemistry. Z. Kristallogr. 219 (2004) 330-338.
- Shimooka, S.; Uheda, K.; Mikami, M.; Kijima, N.; Imura, H.; Horibe, K.: Complex oxynitride phosphor, light-emitting device using same, image display, illuminating device, phosphor-containing composition and complex oxynitride. Mitsubishi Chemical Corporation, PCT Int. Appl., WO088966, A1, 2007.
- Braun, C.; Seibald, M.; Börger, S. L.; Oeckler, O.; Boyko, T. D.; Moewes, A.; Miehe, G.; Tücks, A.; Schnick, W.: Material Properties and Structural Characterization of M₃Si₆O₁₂N₂:Eu²⁺ (M=Ba, Sr) — A Comprehensive Study on a Promising Green Phosphor for pc-LEDs. Chem. Eur. J. 16 (2010) 9646-9657.
- Sedlmaier, S. J.; Schmedt auf der Günne, J.; Schnick, W.: Sr₃P₆O₆N₈ A Highly Condensed Layered Phosphate. Dalton Trans. (2009) 4081-4084.

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	x	у	Ζ	$U_{ m iso}$
Ro1	24	2/	1/	0.3853(2)	0.0101(5)
Dal Ba?	$\frac{2a}{1b}$	/3	/3	0.3855(2) 1/	0.0101(3) 0.0129(6)
P Daz	10 69	0.7747(5)	0 1747(6)	0.8967(5)	0.0129(0) 0.0053(8)
N1	2d	2/3	1/1/(0)	0.918(2)	0.006(1)
N2	6g	0.686(2)	0.019(1)	0.107(2)	0.006
0	6g	0.709(1)	0.072(1)	0.684(1)	0.006

- Landskron, K.: Phosphor(V)-nitride durch Hochdruck-Hochtemperatur-Synthese. PhD Thesis, Ludwig-Maximilians-Universität, München, 2001.
- Karau, F.: Hochdrucksynthese neuer SiO₂-analoger Nitride des Phosphors sowie neue Verfahren zur Darstellung von Metallaziden. PhD Thesis, Ludwig-Maximilians-Universität, München, 2007.
- Coelho, A. A.: TOPAS-Academic. Version 4.1. Coelho Software, Brisbane, Australia, 2007.
- Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Version 3.1b. Crystal Impact GbR, Bonn, Germany 1998.