7 research outputs found

    Fine Ash-Bearing Particles as a Major Aerosol Component in Biomass Burning Smoke

    Get PDF
    Biomass burning (BB) events are occurring globally with increasing frequency, and their emissions are having more impacts on human health and climate. Large ash particles are recognized as a BB product with major influences on soil and water environments. However, fine-ash particles, which have diameters smaller than several microns and characteristic morphologies and compositions (mainly Ca and Mg carbonates), have not yet been explicitly considered as a major BB aerosol component either in field observations or climate models. This study measured BB aerosol samples using transmission electron microscopy (TEM) and ion chromatography during the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign. We show that significant amounts of fine ash-bearing particles are transported \u3e100 km from their fire sources. Our environmental chamber experiments suggest that they can act as cloud condensation and ice nuclei. We also found considerable amounts of fine ash-bearing particles in the TEM samples collected during previous campaigns (Biomass Burning Observation Project and Megacity Initiative: Local and Global Research Observations). These ash particles are commonly mixed with organic matter and make up ∼8% and 5% of BB smoke by number and mass, respectively, in samples collected during the FIREX-AQ campaign. The measured ash-mass concentrations are approximately five times and six times greater than those of BB black carbon and potassium, respectively, scaling to an estimated global emission of 11.6 Tg yr−1 with a range of 8.8–16.3 Tg yr−1. Better characterization and constraints on these fine ash-bearing particles will improve BB aerosol measurements and strengthen assessments of BB impacts on human health and climate

    Light absorption by brown carbon over the South-East Atlantic Ocean

    No full text
    International audienceBiomass burning emissions often contain brown carbon (BrC), which represents a large family of light-absorbing organics that are chemically complex, thus making it difficult to estimate their absorption of incoming solar radiation, resulting in large uncertainties in the estimation of the global direct radiative effect of aerosols. Here we investigate the contribution of BrC to the total light absorption of biomass burning aerosols over the South-East Atlantic Ocean with different optical models, utilizing a suite of airborne measurements from the ORACLES 2018 campaign. An effective refractive index of black carbon (BC), meBC=1.95+ikeBC, that characterizes the absorptivity of all absorbing components at 660 nm wavelength was introduced to facilitate the attribution of absorption at shorter wavelengths, i.e. 470 nm. Most values of the imaginary part of the effective refractive index, keBC, were larger than those commonly used for BC from biomass burning emissions, suggesting contributions from absorbers besides BC at 660 nm. The TEM-EDX single-particle analysis further suggests that these long-wavelength absorbers might include iron oxides, as iron is found to be present only when large values of keBC are derived. Using this effective BC refractive index, we find that the contribution of BrC to the total absorption at 470 nm (RBrC,470) ranges from ∼8 %-22 %, with the organic aerosol mass absorption coefficient (MACOA,470) at this wavelength ranging from 0.30±0.27 to 0.68±0.08 m2 g-1. The core-shell model yielded much higher estimates of MACOA,470 and RBrC,470 than homogeneous mixing models, underscoring the importance of model treatment. Absorption attribution using the Bruggeman mixing Mie model suggests a minor BrC contribution of 4 % at 530 nm, while its removal would triple the BrC contribution to the total absorption at 470 nm obtained using the AAE (absorption Ångström exponent) attribution method. Thus, it is recommended that the application of any optical properties-based attribution method use absorption coefficients at the longest possible wavelength to minimize the influence of BrC and to account for potential contributions from other absorbing materials

    The Two-Column Aerosol Project: Phase I - Overview and Impact of Elevated Aerosol Layers on Aerosol Optical Depth

    No full text
    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere be tween and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2).These layer s contributed up to 60 of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. In addition, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed
    corecore