109 research outputs found

    Serum level of lactate dehydrogenase, homocystein, hemoglobin and platelet in preeclampsia

    Get PDF
    Objectives: Pre-eclampsia affects approximately 5-8% of pregnant women. The aim of this study was to compare the serum level of Lactate dehydrogenase (LDH), Homocystein, Hemoglubin and platelet in pregnant women diagnosed as pre-eclampsia and a normal group in Gorgan city, Northeastern Iran from 2007-2008. Methodology: In this case control study, 50 cases of pre-eclampsia were compared with the control group women hospitalized in Dezyani hospital. Pre-eclampsia criteria were: Blood pressure more than or equal to 140/90 mm hg and Proteinuria greater or equal to 300 mg/ 24 hours urine sample in the third trimester. Hemoglobin, platelet, LDH and hemocystein were measured. Data were analyzed by the mean of SPSS-14 program & Chi-2 or t-student were used. Results: The difference of BMI and family incomes was significant between two groups (P-value0.01). Hemocystein level was more than normal range in five patients with pre-eclampsia (P-value<0.001). Conclusions: In this study, hemocystein level was significantly higher in pre-eclampsia patients but LDH, hemoglobin and platelet level had no significant difference

    Regaining the FORS: optical ground-based transmission spectroscopy of the exoplanet WASP-19b with VLT+FORS2

    Get PDF
    In the past few years, the study of exoplanets has evolved from being pure discovery, then being more exploratory in nature and finally becoming very quantitative. In particular, transmission spectroscopy now allows the study of exoplanetary atmospheres. Such studies rely heavily on space-based or large ground-based facilities, because one needs to perform time-resolved, high signal-to-noise spectroscopy. The very recent exchange of the prisms of the FORS2 atmospheric diffraction corrector on ESO's Very Large Telescope should allow us to reach higher data quality than was ever possible before. With FORS2, we have obtained the first optical ground-based transmission spectrum of WASP-19b, with 20 nm resolution in the 550--830 nm range. For this planet, the data set represents the highest resolution transmission spectrum obtained to date. We detect large deviations from planetary atmospheric models in the transmission spectrum redwards of 790 nm, indicating either additional sources of opacity not included in the current atmospheric models for WASP-19b or additional, unexplored sources of systematics. Nonetheless, this work shows the new potential of FORS2 for studying the atmospheres of exoplanets in greater detail than has been possible so far.Comment: 7 pages, 9 figures, 3 tables. Accepted for publication in A&

    Making FORS2 fit for exoplanet observations (again)

    Full text link
    For about three years, it was known that precision spectrophotometry with FORS2 suffered from systematic errors that made quantitative observations of planetary transits impossible. We identified the Longitudinal Atmospheric Dispersion Compensator (LADC) as the most likely culprit, and therefore engaged in a project to exchange the LADC prisms with the uncoated ones from FORS1. This led to a significant improvement in the depth of FORS2 zero points, a reduction in the systematic noise, and should make FORS2 again competitive for transmission spectroscopy of exoplanets.Comment: To appear in the March issue of the ESO Messenge

    CARMENES detection of the Ca II infrared triplet and possible evidence of He I in the atmosphere of WASP-76b

    Get PDF
    Casasayas-Barris, N., et al.Ultra-hot Jupiters are highly irradiated gas giants with equilibrium temperatures typically higher than 2000 K. Atmospheric studies of these planets have shown that their transmission spectra are rich in metal lines, with some of these metals being ionised due to the extreme temperatures. Here, we use two transit observations of WASP-76b obtained with the CARMENES spectrograph to study the atmosphere of this planet using high-resolution transmission spectroscopy. Taking advantage of the two channels and the coverage of the red and near-infrared wavelength ranges by CARMENES, we focus our analysis on the study of the Ca II infrared triplet (IRT) at 8500 Å and the He I triplet at 10 830 Å. We present the discovery of the Ca II IRT at 7¿ in the atmosphere of WASP-76b using the cross-correlation technique, which is consistent with previous detections of the Ca II H&K lines in the same planet, and with the atmospheric studies of other ultra-hot Jupiters reported to date. The low mass density of the planet, and our calculations of the XUV (X-ray and EUV) irradiation received by the exoplanet, show that this planet is a potential candidate to have a He I evaporating envelope and, therefore, we performed further investigations focussed on this aspect. The transmission spectrum around the He I triplet shows a broad and red-shifted absorption signal in both transit observations. However, due to the strong telluric contamination around the He I lines and the relatively low signal-to-noise ratio of the observations, we are not able to unambiguously conclude if the absorption is due to the presence of helium in the atmosphere of WASP-76b, and we consider the result to be only an upper limit. Finally, we revisit the transmission spectrum around other lines such as Na I, Li I, H¿, and K I. The upper limits reported here for these lines are consistent with previous studies.We acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program under grant agreement no. 694513, the Agencia Estatal de Investigación of the Ministerio de Ciencia, Innovación y Universidades and the ERDF through projects PID2019-109522GB-C5[1:4]/AEI/10.13039/501100011033, PID2019- 110689RB-I00/AEI/10.13039/501100011033, ESP2017-87143-R, and ESP2016- 80435-C2-2-R, and the Centre of Excellence “Severo Ochoa” and “María de Maeztu” awards to the Instituto de Astrofísica de Canarias (CEX2019-000920- S), Instituto de Astrofísica de Andalucía (SEV-2017-0709), and Centro de Astrobiología (MDM-2017-0737), and the Generalitat de Catalunya/CERCA programme. T.H. acknowledges support by the European Research Council under the Horizon 2020 Framework Program via the ERC Advanced Grant Origins 83 24 28. G.M. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 895525

    An atlas of resolved spectral features in the transmission spectrum of WASP-189 b with MAROON-X

    Full text link
    Exoplanets in the ultra-hot Jupiter regime provide an excellent laboratory for testing the impact of stellar irradiation on the dynamics and chemical composition of gas giant atmospheres. In this study, we observed two transits of the ultra-hot Jupiter WASP-189 b with MAROON-X/Gemini-North to probe its high-altitude atmospheric layers, using strong absorption lines. We derived posterior probability distributions for the planetary and stellar parameters by calculating the stellar spectrum behind the planet at every orbital phase during the transit. This was used to correct the Rossiter-McLaughlin imprint on the transmission spectra. Using differential transmission spectroscopy, we detect strong absorption lines of Ca+, Ba+, Na, Hα\alpha, Mg, Fe, and Fe+, providing an unprecedented and detailed view of the atmospheric chemical composition. Ca+ absorption is particularly well suited for analysis through time-resolved narrow-band spectroscopy, owing to its transition lines formed in high-altitude layers. The spectral absorption lines show no significant blueshifts that would indicate high-altitude day-to-night winds, and further analysis is needed to investigate the implications for atmospheric dynamics. These high signal-to-noise observations provide a benchmark data set for testing high-resolution retrievals and the assumptions of atmospheric models. We also simulate observations of WASP-189 b with ANDES/ELT, and show that ANDES will be highly sensitive to the individual absorption lines of a myriad of elements and molecules, including TiO and CO.Comment: 34 pages, 31 figures, accepted for publication in A&A on 16 February 202

    A precise blue-optical transmission spectrum from the ground: evidence for haze in the atmosphere of WASP-74b

    Get PDF
    We report transmission spectroscopy of the bloated hot Jupiter WASP-74b in the wavelength range from 4000 to 6200 Å. We observe two transit events with the Very Large Telescope (VLT) Focal Reducer and Spectrograph and present a new method to measure the exoplanet transit depth as a function of wavelength. The new method removes the need for a reference star in correcting the spectroscopic light curves for the impact of atmospheric extinction. It also provides improved precision, compared to other techniques, reaching an average transit depth uncertainty of 211 ppm for a solar-type star of V = 9.8 mag and over wavelength bins of 80 Å. The VLT transmission spectrum is analysed both individually and in combination with published data from Hubble Space Telescope and Spitzer. The spectrum is found to exhibit a mostly featureless slope and equilibrium chemistry retrievals with PLATON favour hazes in the upper atmosphere of the exoplanet. Free chemistry retrievals with AURA further support the presence of hazes. While additional constraints are possible depending on the choice of atmospheric model, they are not robust and may be influenced by residual systematics in the data sets. Our results demonstrate the utility of new techniques in the analysis of optical, ground-based spectroscopic data and can be highly complementary to follow-up observations in the infrared with JWST
    corecore