260 research outputs found

    Water scarcity and the role of storage in development

    Get PDF
    Groundwater / Water storage / Water scarcity / Reservoir storage / Costs / Aquifers / Conjunctive use / River basins / Surface water / Dams

    Enclaves in the Cadillac Mountain Granite (Coastal Maine): Samples of Hybrid Magma from the Base of the Chamber

    Get PDF
    The Cadillac Mountain intrusive complex is dominated by the Cadillac Mountain granite and a 2–3 km thick section of interlayered gabbroic, dioritic and granitic rocks which occurs near the base of the granite. The layered rocks record hundreds of injections of basaltic magma that ponded on the chamber floor and variably interacted with the overlying silicic magma. Magmatic enclaves, ranging in composition from 55 to 78 wt % SiO2, are abundant in granite above the layered mafic rocks. The most mafic enclaves are highly enriched in incompatible elements and depleted in compatible elements. Their compositions can be best explained by periodic replenishment, mixing and fractional crystallization of basaltic magma at the base of the chamber. The intermediate to silicic enclaves formed by hybridization between the evolved basaltic magma and resident silicic magma. There is little evidence for significant exchange between enclaves and the enclosing granite. Instead, hybridization apparently occurred between stratified mafic and silicic magmas at the base of the chamber. Enclaves in a restricted area commonly show distinctive compositional characteristics, suggesting they were derived from a discrete batch of hybrid magma. Enclaves were probably dispersed into a localized portion of the granitic magma when replenishment or eruption disrupted the intermediate layer

    FLICK: developing and running application-specific network services

    Get PDF
    Data centre networks are increasingly programmable, with application-specific network services proliferating, from custom load-balancers to middleboxes providing caching and aggregation. Developers must currently implement these services using traditional low-level APIs, which neither support natural operations on application data nor provide efficient performance isolation. We describe FLICK, a framework for the programming and execution of application-specific network services on multi-core CPUs. Developers write network services in the FLICK language, which offers high-level processing constructs and application-relevant data types. FLICK programs are translated automatically to efficient, parallel task graphs, implemented in C++ on top of a user-space TCP stack. Task graphs have bounded resource usage at runtime, which means that the graphs of multiple services can execute concurrently without interference using cooperative scheduling. We evaluate FLICK with several services (an HTTP load-balancer, a Memcached router and a Hadoop data aggregator), showing that it achieves good performance while reducing development effort

    The C-terminal cysteine annulus participates in auto-chaperone function for Salmonella phage P22 tailspike folding and assembly

    Get PDF
    Elongated trimeric adhesins are a distinct class of proteins employed by phages and viruses to recognize and bind to their host cells, and by bacteria to bind to their target cells and tissues. The tailspikes of E. coli phage K1F and Bacillus phage Ø29 exhibit auto-chaperone activity in their trimeric C-terminal domains. The P22 tailspike is structurally homologous to those adhesins. Though there are no disulfide bonds or reactive cysteines in the native P22 tailspikes, a set of C-terminal cysteines are very reactive in partially folded intermediates, implying an unusual local conformation in the domain. This is likely to be involved in the auto-chaperone function. We examined the unusual reactivity of C-terminal tailspike cysteines during folding and assembly as a potential reporter of auto-chaperone function. Reaction with IAA blocked productive refolding in vitro, but not off-pathway aggregation. Two-dimensional PAGE revealed that the predominant intermediate exhibiting reactive cysteine side chains was a partially folded monomer. Treatment with reducing reagent promoted native trimer formation from these species, consistent with transient disulfide bonds in the auto-chaperone domain. Limited enzymatic digestion and mass spectrometry of folding and assembly intermediates indicated that the C-terminal domain was compact in the protrimer species. These results indicate that the C-terminal domain of the P22 tailspike folds itself and associates prior to formation of the protrimer intermediate, and not after, as previously proposed. The C-terminal cysteines and triple β-helix domains apparently provide the staging for the correct auto-chaperone domain formation, needed for alignment of P22 tailspike native trimer

    FLICK: Developing and running application-specific network services

    Get PDF
    Data centre networks are increasingly programmable, with application-specific\textit{application-specific} network services proliferating, from custom load-balancers to middleboxes providing caching and aggregation. Developers must currently implement these services using traditional low-level APIs, which neither support natural operations on application data nor provide efficient performance isolation. We describe FLICK, a framework for the programming and execution of application-specific network services on multi-core CPUs. Developers write network services in the FLICK language\textit{language}, which offers high-level processing constructs and application-relevant data types. FLICK programs are translated automatically to efficient, parallel task graphs\textit{task graphs}, implemented in C++ on top of a user-space TCP stack. Task graphs have bounded resource usage at runtime, which means that the graphs of multiple services can execute concurrently without interference using cooperative scheduling. We evaluate FLICK with several services (an HTTP load-balancer, a Memcached router and a Hadoop data aggregator), showing that it achieves good performance while reducing development effort.Engineering and Physical Sciences Research CouncilThis is the author accepted manuscript. The final version is available from USENIX via https://www.usenix.org/conference/atc16/technical-sessions/presentation/ali

    Cyclic compression increases F508 DEL CFTR expression in ciliated human airway epithelium

    Get PDF
    The mechanisms by which transepithelial pressure changes observed during exercise and airway clearance can benefit lung health are challenging to study. Here, we have studied 117 mature, fully ciliated airway epithelial cell filters grown at air-liquid interface grown from 10 cystic fibrosis (CF) and 19 control subjects. These were exposed to cyclic increases in apical air pressure of 15 cmH2O for varying times. We measured the effect on proteins relevant to lung health, with a focus on the CF transmembrane regulator (CFTR). Immunofloures-cence and immunoblot data were concordant in demonstrating that air pressure increased F508Del CFTR expression and maturation. This effect was in part dependent on the presence of cilia, on Ca2+ influx, and on formation of nitrogen oxides. These data provide a mechanosensory mechanism by which changes in luminal air pressure, like those observed during exercise and airway clearance, can affect epithelial protein expression and benefit patients with diseases of the airways
    • …
    corecore