
FLICK: Developing and Running Application-Specific Network Services

Abdul Alim†, Richard G. Clegg†, Luo Mai†, Lukas Rupprecht†, Eric Seckler†,
Paolo Costa]†, Peter Pietzuch†, Alexander L. Wolf†, Nik Sultana∗,

Jon Crowcroft∗, Anil Madhavapeddy∗, Andrew W. Moore∗, Richard Mortier∗,
Masoud Koleini[, Luis Oviedo[, Derek McAuley[, Matteo Migliavacca‡

†Imperial College London, ]Microsoft Research, ∗University of Cambridge,
[University of Nottingham, ‡University of Kent

Abstract
Data centre networks are increasingly programmable,
with application-specific network services proliferating,
from custom load-balancers to middleboxes providing
caching and aggregation. Developers must currently im-
plement these services using traditional low-level APIs,
which neither support natural operations on application
data nor provide efficient performance isolation.

We describe FLICK, a framework for the programming
and execution of application-specific network services
on multi-core CPUs. Developers write network services
in the FLICK language, which offers high-level pro-
cessing constructs and application-relevant data types.
FLICK programs are translated automatically to efficient,
parallel task graphs, implemented in C++ on top of a
user-space TCP stack. Task graphs have bounded re-
source usage at runtime, which means that the graphs
of multiple services can execute concurrently without
interference using cooperative scheduling. We evaluate
FLICK with several services (an HTTP load-balancer,
a Memcached router and a Hadoop data aggregator),
showing that it achieves good performance while reduc-
ing development effort.

1 Introduction
Distributed applications in data centres increasingly want
to adapt networks to their requirements. Application-
specific network services, such as application load-
balancers [23, 40], request data caches [36], and in-
network data aggregators [29], therefore blur the bound-
ary between the network fabric at the core and applica-
tions at the edge. For example, a Memcached request
router can transparently scale deployments by routing re-
quests using knowledge of the Memcached protocol [36].
In this paper, we explore how application developers, not

Authors are ordered alphabetically, grouped by institution and
non-faculty/faculty status.

network engineers, can be supported when implementing
new application-specific network services.

Existing software middlebox platforms, such as Click-
OS [30], xOMB [3] and SmartSwitch [53], support
only application-independent network services, i.e. IP
routers, firewalls or transport-layer gateways. Using
them to interact with payload data in network flows leads
to an impedance mismatch due to their byte-oriented,
per-packet APIs. Instead, application developers would
prefer high-level constructs and data types when express-
ing processing logic. For example, when defining the
dispatching logic of a Memcached request router, a de-
veloper would ideally treat key/value pairs as a first-class
data type in their program.

Today’s middlebox platforms also force develop-
ers to optimise their code carefully to achieve high
throughput—implementing a new Click module [24, 30]
in C++ that can process data at 10 Gbps line rate is chal-
lenging. As a result, many new application-specific net-
work services [40, 29] are built from scratch rather than
leveraging the above platforms.

Considerable work went into developing new high-
level languages for network control within software-
defined networking (SDN) [16, 33, 8, 48]. While these
simplify the specification of network management poli-
cies, they typically operate on a per-packet basis and sup-
port a limited set of per-packet actions once matched,
e.g. forwarding, cloning or dropping. In contrast, app-
lication-specific network services must refer to payload
data, e.g. messages, key/value pairs or deserialised ob-
jects, and carry out richer computations, e.g. arbitrary
payload transformations, caching or data aggregation.

Our goal is to enable developers to express appli-
cation-specific network services in a natural high-level
programming model, while executing such programs in
an efficient and scalable manner. This is challenging for
several reasons: (i) in many cases, the cost of data de-
serialisation and dynamic memory management reduces

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/42340553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


achievable processing throughput. While high-level pro-
gramming languages such as Java or Python can manipu-
late complex application objects, they struggle to provide
predictable processing throughput for line-rate process-
ing of network data; (ii) a typical data centre may host
hundreds of applications, with each potentially requir-
ing its own network service. Services must thus share
resources, e.g. CPU and memory, without interference.
Existing middlebox platforms use coarse-grained virtu-
alisation [30], which carries a context-switching over-
head of hundreds of microseconds. This is too high for
fine-grained resource sharing between many application-
specific network services; and (iii) most of the applica-
tions use TCP for transport, and an application-specific
middlebox needs to terminate TCP connections to access
data. Performance and scalability of such middleboxes
are often bounded by the high cost of connection termi-
nation and frequent socket reads/writes.

We describe FLICK, a framework for developers to
program and execute application-specific network ser-
vices. It consists of the FLICK language for defining
network services, and the FLICK platform for executing
compiled programs efficiently on multi-core CPUs.

Programs in the FLICK language have bounded re-
source usage and are guaranteed to terminate. This is
possible because most application-specific network ser-
vices follow a similar pattern: they deserialise and ac-
cess application data types, iterate over these data types
to perform computation, and output the results as net-
work flows. The language is therefore statically typed,
and all built-in types (e.g. integer, string, and array)
must have a maximum size to avoid dynamic memory
allocation. Programs can refer to complex application-
defined data types, such as messages or key/value pairs,
for which efficient parsers are synthesised from the type
definitions in the program. Since functions can only per-
form finite iteration over fixed-length data types, FLICK
programs with finite input must terminate.

A compiler translates FLICK programs into task
graphs implemented in C++. Tasks graphs are designed
to permit the efficient and safe execution of many con-
current network services on a shared platform. A task
graph consists of parallel tasks that define the computa-
tion of the FLICK program, and channels that propagate
data between concurrently executing tasks. Input/out-
put tasks perform the serialisation/deserialisation of data
to and from application objects. Since FLICK programs
explicitly specify accesses to application data fields, the
compiler can generate custom parsing code, eliminating
the overheads of general-purpose parsers.

The FLICK platform executes multiple task graphs be-
longing to different services. To reduce the overhead
of frequent connection termination and socket opera-
tion, task graphs use a modified version of a highly-

scalable user-space TCP stack (mTCP [21]) with Intel’s
Data Plane Development Kit (DPDK) [20]. Task graphs
are also scheduled cooperatively, avoiding context-
switching overhead. They cannot interfere with each
other, both in terms of performance and resources, due
to their safe construction from FLICK programs.

We evaluate a prototype implementation of FLICK
using both micro-benchmarks and three application-
specific network services: an HTTP load balancer, a
Memcached proxy and a Hadoop data aggregator. Our
results show that FLICK can execute these services with
throughput and latency that matches that of specialised
middlebox implementations. In addition, it scales with
a larger number of compute tasks. This paper focuses
on the design, implementation and performance of a sin-
gle FLICK middlebox. However, the wider vision is of a
number of such boxes within a data centre [10].

2 Application-Specific Network Services

FLICK focuses on a specific context: data centres in
which multiple, complex, distributed applications run
concurrently. In this case, to achieve higher performance,
flexibility or efficiency, it is advantageous to execute por-
tions of these applications, e.g. related to load-balancing,
caching or aggregation, as application-specific network
services directly on network elements.

To do this, application developers must add code to
network elements such as software middleboxes. Today
this typically means that they must implement compli-
cated features of the underlying network protocols (e.g.
TCP flow construction, HTTP parsing and application
data deserialisation). For performance reasons, network
services must be highly parallel, which requires consid-
erable developer expertise to achieve. Network resources
are also inherently shared: even if hosts can be assigned
to single applications, network elements must host many
services for different applications.

The goal of FLICK is to allow developers to easily and
efficiently introduce application-specific processing into
network elements. Present approaches are unsatisfactory
for three key reasons: (i) they provide only low-level
APIs that focus on the manipulation of individual pack-
ets, or at best, individual flows; (ii) they do not permit de-
velopers to implement services in high-level languages,
but typically rely on the use of low-level languages such
as C; and (iii) they provide little support for the high de-
grees of concurrency that are required to make network
service implementations perform well.

Next we elaborate on some of these challenges as en-
countered in our example applications (§2.1), and then
contrast our approach with existing solutions (§2.2).

2



2.1 Use cases
We consider three sample uses for application-specific
services: HTTP load balancing, Memcached request
routing, and Hadoop data aggregation.

HTTP load balancer. To cope with a large number of
concurrent requests, server farms employ load balancers
as front ends. These are implemented by special-purpose
hardware or highly-optimised software stacks and both
sacrifice flexibility for performance. As a result, load
balancers must often be reimplemented for each appli-
cation to tailor them to specific needs. For example,
this may be necessary to ensure consistency when mul-
tiple TCP connections are served by the same server; to
improve the efficiency of clusters running Java code, a
load balancer may avoid dispatching requests to servers
that are currently performing garbage collection [27]; fi-
nally, there is increasing interest from Internet companies
to monitor application-specific request statistics—a task
that load balancers are ideally placed to carry out [13].

Memcached proxy. Memcached [15] is a popular
distributed in-memory key/value store for reducing the
number of client reads from external data sources by
caching read results in memory. In production environ-
ments, a proxy such as twemproxy [52] or mcrouter [36]
is situated usually between clients and servers to handle
key/value mappings and instance configurations. This
decouples clients and servers and allows the servers to
scale out or in horizontally.

Past attempts to implement Memcached routers have
involved user-space solutions [36], incurring high over-
heads due to expensive memory copies between kernel-
and user-space. More recent proposals, such as Mem-
Switch [53], have shown that a dedicated single-purpose
software switch that intercepts and processes Mem-
cached traffic can be more efficient. To customise
MemSwitch, developers, however, must write com-
plex in-network programs that process raw packet pay-
loads. This not only compromises the safety and per-
formance of the network stack, but also complicates
development—it requires knowledge about low-level de-
tails of networking as well as skills for writing high-
performance, parallelisable packet-processing code.

Hadoop data aggregator. Hadoop [54] is a popular
map/reduce framework for data analysis. In many de-
ployments, job completion times are network-bound due
to the shuffle phase [9]. This means that performance
can be improved through an application-specific network
service for in-network data aggregation [29], which ex-
ecutes an intermediate in-network reduction within the
network topology before data reaches the reducers, thus
reducing traffic crossing the network.

Providing an in-network data aggregation for Hadoop
serves as a good example of an application-specific ser-

vice that must carry out complex data serialisation and
deserialisation. A developer wishing to implement in-
network reduce logic must therefore re-implement the
logic necessary to reconstruct Hadoop key/value pairs
from TCP flows—a difficult and error-prone task.

2.2 Existing solution space
There are several proposals for addressing the challenges
identified in the use cases above. We observe that exist-
ing solutions typically fit into one of four classes:
(i) Specialised, hand-crafted implementations. Sys-
tems such as netmap [43, 44] provide for efficient
user-space implementations of packet-processing appli-
cations. Unfortunately, they offer only low-level abstrac-
tions, forcing developers to process individual packets
rather than high-level business logic.
(ii) Packet-oriented middleboxes. Frameworks for im-
plementing software middleboxes, such as ClickOS [30]
and SmartSwitch [53], enable high-performance process-
ing of network data and can be used to build higher-level
abstractions. However, they fail to support useful high-
level language features such as strong and static typing,
or simple support for data-parallel processing.
(iii) Network programmability. More recently, we
see increasing deployment of software-defined network-
ing techniques, usually OpenFlow [31]. More advanced
technologies have been proposed such as P4 [8] and Pro-
tocol Oblivious Forwarding [47]. These enable efficient
in-network processing of traffic, selectively forwarding,
rewriting and processing packets. However, they suffer
from many of the same issues as (ii) due to their narrow
focus on packet-level abstractions.
(iv) Flow-oriented servers. For in-network processing
concerned with higher-level flow abstractions, it is com-
mon to leverage existing server implementations, such
as Nginx [35] or Apache [51], and customise them either
at the source level or through extensibility mechanisms
such as modules. Another example is Netflix ribbon [34],
which provides a number of highly configurable middle-
box services along with a Java library to build custom
services. While this raises the level of abstraction some-
what, the overheads of using such large, complex pieces
of software to perform application-specific network ser-
vices are substantial.

3 FLICK Framework
We motivate our design by outlining requirements (§3.1),
and providing a high-level overview (§3.2).

3.1 Requirements
Based on the shortcomings of the approaches highlighted
in §2.2, we identify the following three design require-
ments for our framework:
R1: Application-level abstractions: developers should

3



compiled

FLICK task graphs

tasks

loaded &
executed

1 2 3

FLICK platform

Listing 1: FLICK program for Memcached cache router

1 type cmd: record
2 opcode : string {size =1}
3 keylen : integer {signed=false , size =2}
4 extraslen : integer {signed=false , size =1}
5 _ : string {size =3}
6 bodylen : integer {signed=false , size =8}
7 _ : string {size =12+ extraslen}
8 key : string {size=keylen}
9 _ : string {size=bodylen -extraslen -keylen}

10

11 proc memcached:
12 (cmd/cmd client , [cmd/cmd] backends)
13 global cache := empty_dict
14 backends => update_cache(cache) => client
15 client => test_cache(client , backends , cache)
16

17 fun update_cache:
18 (cache: ref dict <string*string >, resp: cmd)
19 -> (cmd)
20 if resp.opcode = 0x0c:
21 cache[resp.key] := resp
22 resp
23

24 fun test_cache:
25 (-/cmd client , [-/cmd] backends ,
26 cache:ref dict <string*string >, req:cmd)
27 -> ()
28 if cache[req.key] = None or req.opcode <> 0x0c:
29 let target = hash(req.key) mod len(backends)
30 req => backends[target]
31 else:
32 cache[req.key] => client

tions: types (lines 1–9), processes (lines 11–15) and func-
tions (lines 17–32).
Types provide high-level definitions of middlebox data val-
ues and, through serialisation annotations, abstract how val-
ues of each type are to be formatted to be sent over or read
from a channel, each of which represents a byte stream.
Types whose values will never cross the network do not need
serialisation annotations. In Listing 1, lines 1 to 9 describe
cmd, the type of Memcached commands, either requests for
a key or replies associating a key with a value, which share
a common format.

Serialisation annotations specify either binary or text
based formats using a mix of fixed and variable lengths
fields. The length of the key, field varies and is specified by
the earlier keylen field. Unused fields are anonymised using
‘_’, preventing their values being accidentally accessed or
changed anywhere in the program. Processing requests and
replies requires access to the opcode field, to select get key
replies (GETK, opcode = 0x0c) which are cached by the
router for matching with future get key requests; and the key
field to perform the match and select the backend to which
to forward the request in case of a cache miss.
Processes describe the middlebox’s input/output channels
and core computation. Channels are bi-directional and typed
according to the type of values produce/consume. In List-

ing 1, lines 11 to 15 show the memcached process’ descrip-
tion. Its channels are shown on lines 12: the client channel
produces and accepts values of type cmd, while backends is
an array of channels which each produces and accepts values
of type cmd.

Processes are instantiated by the runtime system which
also binds channels to the actual byte streams. In this exam-
ple, when a client connects to the middlebox, the runtime
creates a new instance of the memcached process and con-
nects it to the underlying representations of the client and
backend sockets.

Computation is specified by defining how data is routed
and processed as it flows across channels connected to the
process. The body of a process specifies how a finite amount
of input from each channel is consumed; unbounded iter-
ation is not permitted, as we will explain §3.2). The body
of the memcached process, lines 14 and 15 is the core of
this middlebox. The first line specifies that anything received
from any backend is handled by update_cache function,
whose result is then sent on the client channel. The sec-
ond line specifies that anything received from the client is
processed by the test_cache function.

Processes may maintain state between inputs, either be
per-instance or per-process (global). For example, line 13
specifies that instances of this memcached process share a
cache.
Functions support processes by allowing structuring of code
but they need not be side-effect free. For example, both func-
tions in Listing 1 have side-effects: update_cache updates
the cache if required, while test_cache writes to a channel
in the backends array.

Finally the type of a function need not be more general
than necessary. We saw that processes interact with the en-
vironment by means of bidirectional channels, but channels
can also be restricted to be unidirectional, as at line 25: nei-
ther the client channel nor any channels in the backends
array are read from in the test_cache function, so they are
typed as being write-only.

3.2 Higher-order functions and bounded resources
To support execution of different processes competing on
shared resources without requiring expensive isolation tech-
niques, FLICK’s expressive power is restricted to allow only
computation guaranteed to terminate.
Fold, map and filter. User-defined functions in FLICK are
restricted to be first-order and cannot be recursive (directly
or indirectly). FLICK provides several higher-order functions
to support common functional transformation, starting with
fold. Folds are a family of bounded iteration operators de-
fined over finite structures (lists). The simplest form of such
functions is fold f acc list, which recursively applies the
function f to each element of list, accumulating the result
into acc, which it ultimately returns. FLICK provides other
common higher-order functions such as map and filter.

5 2015/3/26

FLICK programs

cooperative scheduling

Listing 1: FLICK program for Memcached cache router

1 type cmd: record
2 opcode : string {size =1}
3 keylen : integer {signed=false , size =2}
4 extraslen : integer {signed=false , size =1}
5 _ : string {size =3}
6 bodylen : integer {signed=false , size =8}
7 _ : string {size =12+ extraslen}
8 key : string {size=keylen}
9 _ : string {size=bodylen -extraslen -keylen}

10

11 proc memcached:
12 (cmd/cmd client , [cmd/cmd] backends)
13 global cache := empty_dict
14 backends => update_cache(cache) => client
15 client => test_cache(client , backends , cache)
16

17 fun update_cache:
18 (cache: ref dict <string*string >, resp: cmd)
19 -> (cmd)
20 if resp.opcode = 0x0c:
21 cache[resp.key] := resp
22 resp
23

24 fun test_cache:
25 (-/cmd client , [-/cmd] backends ,
26 cache:ref dict <string*string >, req:cmd)
27 -> ()
28 if cache[req.key] = None or req.opcode <> 0x0c:
29 let target = hash(req.key) mod len(backends)
30 req => backends[target]
31 else:
32 cache[req.key] => client

tions: types (lines 1–9), processes (lines 11–15) and func-
tions (lines 17–32).
Types provide high-level definitions of middlebox data val-
ues and, through serialisation annotations, abstract how val-
ues of each type are to be formatted to be sent over or read
from a channel, each of which represents a byte stream.
Types whose values will never cross the network do not need
serialisation annotations. In Listing 1, lines 1 to 9 describe
cmd, the type of Memcached commands, either requests for
a key or replies associating a key with a value, which share
a common format.

Serialisation annotations specify either binary or text
based formats using a mix of fixed and variable lengths
fields. The length of the key, field varies and is specified by
the earlier keylen field. Unused fields are anonymised using
‘_’, preventing their values being accidentally accessed or
changed anywhere in the program. Processing requests and
replies requires access to the opcode field, to select get key
replies (GETK, opcode = 0x0c) which are cached by the
router for matching with future get key requests; and the key
field to perform the match and select the backend to which
to forward the request in case of a cache miss.
Processes describe the middlebox’s input/output channels
and core computation. Channels are bi-directional and typed
according to the type of values produce/consume. In List-

ing 1, lines 11 to 15 show the memcached process’ descrip-
tion. Its channels are shown on lines 12: the client channel
produces and accepts values of type cmd, while backends is
an array of channels which each produces and accepts values
of type cmd.

Processes are instantiated by the runtime system which
also binds channels to the actual byte streams. In this exam-
ple, when a client connects to the middlebox, the runtime
creates a new instance of the memcached process and con-
nects it to the underlying representations of the client and
backend sockets.

Computation is specified by defining how data is routed
and processed as it flows across channels connected to the
process. The body of a process specifies how a finite amount
of input from each channel is consumed; unbounded iter-
ation is not permitted, as we will explain §3.2). The body
of the memcached process, lines 14 and 15 is the core of
this middlebox. The first line specifies that anything received
from any backend is handled by update_cache function,
whose result is then sent on the client channel. The sec-
ond line specifies that anything received from the client is
processed by the test_cache function.

Processes may maintain state between inputs, either be
per-instance or per-process (global). For example, line 13
specifies that instances of this memcached process share a
cache.
Functions support processes by allowing structuring of code
but they need not be side-effect free. For example, both func-
tions in Listing 1 have side-effects: update_cache updates
the cache if required, while test_cache writes to a channel
in the backends array.

Finally the type of a function need not be more general
than necessary. We saw that processes interact with the en-
vironment by means of bidirectional channels, but channels
can also be restricted to be unidirectional, as at line 25: nei-
ther the client channel nor any channels in the backends
array are read from in the test_cache function, so they are
typed as being write-only.

3.2 Higher-order functions and bounded resources
To support execution of different processes competing on
shared resources without requiring expensive isolation tech-
niques, FLICK’s expressive power is restricted to allow only
computation guaranteed to terminate.
Fold, map and filter. User-defined functions in FLICK are
restricted to be first-order and cannot be recursive (directly
or indirectly). FLICK provides several higher-order functions
to support common functional transformation, starting with
fold. Folds are a family of bounded iteration operators de-
fined over finite structures (lists). The simplest form of such
functions is fold f acc list, which recursively applies the
function f to each element of list, accumulating the result
into acc, which it ultimately returns. FLICK provides other
common higher-order functions such as map and filter.

5 2015/3/26

Listing 1: FLICK program for Memcached cache router

1 type cmd: record
2 opcode : string {size =1}
3 keylen : integer {signed=false , size =2}
4 extraslen : integer {signed=false , size =1}
5 _ : string {size =3}
6 bodylen : integer {signed=false , size =8}
7 _ : string {size =12+ extraslen}
8 key : string {size=keylen}
9 _ : string {size=bodylen -extraslen -keylen}

10

11 proc memcached:
12 (cmd/cmd client , [cmd/cmd] backends)
13 global cache := empty_dict
14 backends => update_cache(cache) => client
15 client => test_cache(client , backends , cache)
16

17 fun update_cache:
18 (cache: ref dict <string*string >, resp: cmd)
19 -> (cmd)
20 if resp.opcode = 0x0c:
21 cache[resp.key] := resp
22 resp
23

24 fun test_cache:
25 (-/cmd client , [-/cmd] backends ,
26 cache:ref dict <string*string >, req:cmd)
27 -> ()
28 if cache[req.key] = None or req.opcode <> 0x0c:
29 let target = hash(req.key) mod len(backends)
30 req => backends[target]
31 else:
32 cache[req.key] => client

tions: types (lines 1–9), processes (lines 11–15) and func-
tions (lines 17–32).
Types provide high-level definitions of middlebox data val-
ues and, through serialisation annotations, abstract how val-
ues of each type are to be formatted to be sent over or read
from a channel, each of which represents a byte stream.
Types whose values will never cross the network do not need
serialisation annotations. In Listing 1, lines 1 to 9 describe
cmd, the type of Memcached commands, either requests for
a key or replies associating a key with a value, which share
a common format.

Serialisation annotations specify either binary or text
based formats using a mix of fixed and variable lengths
fields. The length of the key, field varies and is specified by
the earlier keylen field. Unused fields are anonymised using
‘_’, preventing their values being accidentally accessed or
changed anywhere in the program. Processing requests and
replies requires access to the opcode field, to select get key
replies (GETK, opcode = 0x0c) which are cached by the
router for matching with future get key requests; and the key
field to perform the match and select the backend to which
to forward the request in case of a cache miss.
Processes describe the middlebox’s input/output channels
and core computation. Channels are bi-directional and typed
according to the type of values produce/consume. In List-

ing 1, lines 11 to 15 show the memcached process’ descrip-
tion. Its channels are shown on lines 12: the client channel
produces and accepts values of type cmd, while backends is
an array of channels which each produces and accepts values
of type cmd.

Processes are instantiated by the runtime system which
also binds channels to the actual byte streams. In this exam-
ple, when a client connects to the middlebox, the runtime
creates a new instance of the memcached process and con-
nects it to the underlying representations of the client and
backend sockets.

Computation is specified by defining how data is routed
and processed as it flows across channels connected to the
process. The body of a process specifies how a finite amount
of input from each channel is consumed; unbounded iter-
ation is not permitted, as we will explain §3.2). The body
of the memcached process, lines 14 and 15 is the core of
this middlebox. The first line specifies that anything received
from any backend is handled by update_cache function,
whose result is then sent on the client channel. The sec-
ond line specifies that anything received from the client is
processed by the test_cache function.

Processes may maintain state between inputs, either be
per-instance or per-process (global). For example, line 13
specifies that instances of this memcached process share a
cache.
Functions support processes by allowing structuring of code
but they need not be side-effect free. For example, both func-
tions in Listing 1 have side-effects: update_cache updates
the cache if required, while test_cache writes to a channel
in the backends array.

Finally the type of a function need not be more general
than necessary. We saw that processes interact with the en-
vironment by means of bidirectional channels, but channels
can also be restricted to be unidirectional, as at line 25: nei-
ther the client channel nor any channels in the backends
array are read from in the test_cache function, so they are
typed as being write-only.

3.2 Higher-order functions and bounded resources
To support execution of different processes competing on
shared resources without requiring expensive isolation tech-
niques, FLICK’s expressive power is restricted to allow only
computation guaranteed to terminate.
Fold, map and filter. User-defined functions in FLICK are
restricted to be first-order and cannot be recursive (directly
or indirectly). FLICK provides several higher-order functions
to support common functional transformation, starting with
fold. Folds are a family of bounded iteration operators de-
fined over finite structures (lists). The simplest form of such
functions is fold f acc list, which recursively applies the
function f to each element of list, accumulating the result
into acc, which it ultimately returns. FLICK provides other
common higher-order functions such as map and filter.

5 2015/3/26

threads

channels

Figure 1: Overview of the FLICK framework

be able to express their network services using familiar
constructs and abstractions without worrying about the
low-level details of per-packet (or per-flow) processing;
R2: High parallelism: to achieve line-rate performan-
ce, programs for application-specific network services
must exploit both data and task parallelism without re-
quiring significant effort from the developers;
R3: Safe and efficient resource sharing: middleboxes
are shared by multiple applications/users, therefore, we
need to ensure that programs do not interfere with one
another, both in terms of CPU and memory resources.

To meet these requirements, FLICK follows the
scheme shown in Figure 1. For the desired level of ab-
straction (R1), it provides a novel high-level language
(Ê; §4). The language allows developers to focus on
the business logic of their network services ignoring low-
level details (e.g. serialisation or TCP reassembly).

Compared to general-purpose languages such as C
or Java, the FLICK language offers a constrained pro-
gramming environment. This makes it easier to compile
FLICK programs to parallel FLICK task graphs (Ë; §5).
The division of programs into tasks allows the platform
to take advantage of both data and task parallelism, thus
exploiting multi-core CPUs (R2).

Finally, the FLICK language bounds the resource us-
age for each invocation of a network service. This al-
lows task graphs to be executed by the FLICK platform
according to a cooperative scheduling discipline (Ì; §5),
permitting a large number of concurrent task graphs to
share the same hardware resources with little interfer-
ence (R3). A pool of worker threads execute tasks co-
operatively, while channels move data between tasks.

3.2 Overview
We now give a more detailed overview of how a devel-
oper uses the FLICK framework (see Figure 1). First they
write the logic of their application-specific network ser-
vices in the FLICK language. After compilation by the
FLICK compiler, the FLICK platform runs a program as
an instance, consisting of a set of task graphs. Each task
graph comprises of a directed acyclic graph of tasks con-
nected by task channels. Depending on the program se-
mantics, multiple instances of the task graph can be in-
stantiated for each network request, or a single graph can
be used by multiple requests.

A task is a schedulable unit of computation. Each task
processes a stream of input values and generates a stream
of output values. Initial input to the task graph is han-
dled by one or more input tasks, which consume data
from a single input channel, i.e. the byte stream of a TCP
connection. An input task then deserialises bytes to val-
ues using deserialisation/parsing code generated by the
FLICK compiler from the types specified in the FLICK
program. Deserialisation splits data into the smallest
units appropriate for the task being considered. For ex-
ample, if the input is from a web client, the byte stream
would be deserialised into individual complete HTTP re-
quests; for Hadoop, a key/value pair is more appropriate.

Received data is then processed by one or more com-
pute tasks and, finally, output from the task graph is emit-
ted to the outside world via an output task, representing
a single outgoing TCP connection. The output task also
executes efficient serialisation code generated from the
FLICK program, converting values into a byte stream that
is placed onto an output channel for transmission.

4 FLICK Programming Model
FLICK provides a domain-specific language (DSL)
targeting application-specific middlebox programming.
While a difficult task, we decided to design a new lan-
guage because we found existing general-purpose lan-
guages inappropriate for middlebox programming due to
their excessive expressive power. Even safe redesigns
of widely-used languages, such as Cyclone [22], are
too powerful for our needs because, by design, they
do not restrict the semantics of programs to terminate
and bound the used resources. Existing specialised lan-
guages for network services, such as PLAN [18], are typ-
ically packet-centric. This makes it hard to implement
application-specific traffic logic that is flow-centric. A
new domain-specific language presents us with the op-
portunity to incorporate primitive abstractions that better
fit the middlebox domain.

We also considered restricting an existing language to
suit our needs (for example OCaml restricted so it per-
forms no unbounded loops and no garbage collection).
This, however, presented two difficulties: (i) exposing
programmers to a familiar language but with altered se-
mantics would be confusing; and (ii) it would prevent
us from including language features for improved safety,
such as static type-checking.

Numerous systems programming tasks have been sim-
plified by providing DSLs to replace general-purpose
programming languages [26, 28, 6, 39, 11]. The FLICK
language is designed (i) to provide convenient, famil-
iar high-level language abstractions targeted specifically
at middlebox development, e.g. application-level types,
processes and channels alongside traditional functions
and primitive types; (ii) to take advantage of execution

4



Listing 1: FLICK program for Memcached proxy
1 type cmd: record
2 key : string
3

4 proc Memcached: (cmd/cmd client , [cmd/cmd] backends)
5 | backends => client
6 | client => target_backend(backends)
7

8 fun target_backend: ([-/cmd] backends , req:cmd) -> ()

9 let target = hash(req.key) mod len(backends)
10 req => backends[target]

parallelism for high throughput; and (iii) to enable effi-
cient and safe handling of multiple programs and many
requests on shared hardware resources by making it im-
possible to express programs with undesirable behaviour,
such as unbounded resource consumption.

In the FLICK language, developers describe
application-specific network services as a collection of
interconnected processes. Each process manipulates
values of the application’s data types, in contrast to
earlier work which described network services as simple
packet processors [24, 7, 30]. Application data is carried
over channels, which interconnect processes with one
another and with network flows. Processes interact
with channels by consuming and processing input
data read from them, and by transmitting output over
them. Processes, channels and network interactions are
handled by the FLICK platform.

The FLICK language is designed to achieve efficient
parallel execution on multi-core CPUs using high-level
parallel primitives. By default, the language offers par-
allelism across multiple requests, handling them concur-
rently. It supports the safe sharing of resources by bound-
ing the resource use of an individual program. Process-
ing of continuous network flows belonging to an applica-
tion is subdivided into discrete units of work so that each
process consumes only a bounded amount of resource.
To achieve this, FLICK control structures are restricted to
finite iteration only. This is not a significant limitation,
however, as application-specific network services typi-
cally carry out deterministic transformations of network
requests to generate responses. User-defined functions
are written in FLICK itself, rather than in a general pur-
pose language as in Click [24] or Pig [37]), which pre-
serves the safety of network services expressed in FLICK.

After presenting the FLICK language by exam-
ple (§4.1), we describe its application data types (§4.2),
primitives and compilation (§4.3).

4.1 Overview
Listing 1 shows a sample FLICK program that imple-
ments a Memcached proxy. Programs are composed of
three types of declarations: data types (lines 1–2), pro-
cesses (lines 4–6) and functions (lines 8–10).

Processes have signatures that specify how they con-

nect to the outside world. In this case, a process called
Memcached declares a signature containing two channels
(line 4): the client channel produces and accepts val-
ues of type cmd, while backends is an array of channels,
each of which produces and accepts values of type cmd.

Processes are instantiated by the FLICK platform,
which binds channels to underlying network flows (§5).
In this example, when a client sends a request, the FLICK
platform creates a new Memcached task graph and assigns
the client connection to this graph. Giving each client
connection a new task graph ensures that responses are
routed back to the correct client.

A process body describes how data is transformed
and routed between channels connected to a process.
The language design ensures that only a finite amount
of input from each channel is consumed. The body
of the Memcached process describes the application-
specific network service: data received from any chan-
nel in backends is sent to the client channel (line 5);
data received from the client is processed by the
target_backend function (line 6), which in turn writes
to a suitable channel in the backends array (line 10).

4.2 Supporting application data types
FLICK programs operate on application data types rep-
resenting the exchanged messages. After an input task
reads such messages from the network, they are parsed
into FLICK data types. Similarly, before processed data
values are transmitted by an output task, they are seri-
alised into the appropriate wire format representation.

The transformation of messages between wire format
and FLICK data types is defined as a message grammar.
During compilation, FLICK generates the corresponding
parsing and serialisation code from the grammar, which
is then used in the input and output tasks of the task
graph, respectively. The generated code is optimised for
efficiency in three ways: (i) it does not dynamically al-
locate memory; (ii) it supports the incremental parsing
of messages as new data arrives; and (iii) it is adapted
automatically to specific use cases.

The syntax to define message grammars is based on
that of the Spicy (formerly Binpac++ [46]) parser gen-
erator. The language provides constructs to define mes-
sages and their serialised representation through units,
fields, and variables, and their composition: units are
used to modularise grammars; fields describe the struc-
ture of a unit; and variables can compute the value of
expressions during parsing or serialisation, e.g. to deter-
mine the size of a field. FLICK grammars can express any
LL(1)-parsable grammar as well as grammars with de-
pendent fields, in a manner similar to Spicy. The FLICK
framework provides reusable grammars for common pro-
tocols, such as the HTTP [14] and Memcached proto-
cols [50]. Developers can also specify additional mes-

5



Listing 2: Partial grammar for Memcached protocol
1 type cmd = unit {
2 %byteorder = big;
3

4 magic_code : uint8;
5 opcode : uint8;
6 key_len : uint16;
7 extras_len : uint8;
8 : uint8; # anonymous field ,

reserved for future use
9 status_or_v_bucket : uint16;

10 total_len : uint32;
11 opaque : uint32;
12 cas : uint64;
13

14 var value_len : uint32
15 &parse = self.total_len -
16 (self.extras_len + self.key_len)
17 &serialize = self.total_len =
18 self.key_len + self.extras_len + $$;
19 extras : bytes &length = self.extras_len;
20 key : string &length = self.key_len;
21 value : bytes &length = self.value_len;
22 };

sage grammars for custom formats, such as application-
specific Hadoop data types.

Listing 2 shows a simplified grammar for Memcached.
The cmd unit for the corresponding FLICK data type
is a sequence of fixed-size fields (lines 4–12), a vari-
able (lines 14–18), and variable-size fields (lines 19–21).
Each field is declared with its wire-format data type, e.g.
the opcode field is an 8-bit integer (line 5). The sizes
of the extras, key, and value fields are determined by
the parsed value of the extras_len and key_len fields
as well as the value_len variable, which is computed
during parsing according to the expression in lines 15
and 16. During serialisation, the values of extras_len,
key_len, and value_len are updated according to the
sizes of the values stored in the extras, key, and value
fields. Subsequently, the value of total_len is up-
dated according to the variable’s serialisation expression
in lines 17 and 18. The %byteorder property decla-
ration in line 2 specifies the wire format encoding of
number values—the generated code transforms such val-
ues between the specified big-endian encoding and the
host byte-order. More advanced features of the gram-
mar language include choices between alternative field
sequences, field repetitions (i.e. lists), and transforma-
tions into custom FLICK field types (e.g. enumerations).

FLICK grammars aim to be reusable and thus in-
clude all fields of a given message format, even though
application-specific network services often only require a
subset of the information encoded in a message. To avoid
generated parsers and serialisers handling unnecessary
data, FLICK programs make accesses to message fields
explicit by declaring a FLICK data type corresponding
to the message (Listing 1, lines 1–2). This enables the
FLICK compiler to generate input and output tasks that
only parse and serialise the required fields for these data
types and their dependencies. Other fields are aggre-

Listing 3: FLICK program for Hadoop data aggregator
1 type kv: record
2 key : string
3 value : string
4

5 proc hadoop: ([kv/-] mappers , -/kv reducer):
6 if (all_ready(mappers)):
7 let result = foldt on mappers
8 ordering elem e1, e2 by elem.key as e_key:
9 let v = combine(e1.val , e2.val)

10 kv(e_key , v)
11 result => reducer
12

13 fun combine(v1: string , v2: string) -> (string): ...

gated into either simplified or composite fields, and then
skipped or simply copied in their wire format representa-
tion. Developers can thus reuse complete message gram-
mars to generate parsers and serialisers, while benefit-
ing from efficient execution for their application-specific
network service.

The current FLICK implementation does not support
exceptions, but data type grammars could provide a de-
fault behaviour when a message is incomplete or not in
an expected form.

4.3 Primitives and compilation
The FLICK language is strongly-typed for safety. To fa-
cilitate middlebox programming, it includes channels,
processes, explicit parallelism, and exception handling
as native features. For example, events such as broken
connections can be caught and handled by FLICK func-
tions, which can notify a backend or record to a log. State
handling is essential for describing many middleboxes,
and the language supports both session-level and long-
term state, whose scope extends across sessions. The lat-
ter is provided through a key/value abstraction to task
graph instances by the FLICK platform. To access it,
the programmer declares a dictionary and labels it with a
global qualifier. Multiple instances of the service share
the key/value store.

The language is restricted to allow only computa-
tions that are guaranteed to terminate, thus avoiding ex-
pensive isolation mechanisms while supporting multiple
processes competing for shared resources. This restric-
tion allows static allocation of memory and cooperative
task scheduling (see §5).

The FLICK language offers primitives to support com-
mon datatypes such as bytes, lists and records. Itera-
tion may only be carried out on finite structures (e.g.
lists). It also provides primitives such as fold, map and
filter but it does not offer higher-order functions: func-
tions such as fold are translated into finite for-loops.
Datatypes may be annotated with cardinalities to deter-
mine statically the required memory. Loops and branch-
ing are compiled to their native counterparts in C++.
Channel- and process-related code is translated to API
calls exposed by the platform (see §5). The language re-

6



lies on the C++ compiler to optimise the target code.
Channels are typed, and at compile time the platform

determines that FLICK programs only send valid data
into channels. Due to the language’s static memory re-
strictions, additional channels cannot be declared at run-
time, though channels may be rebound, e.g. to connect to
a different backend server.

The language also provides foldt, a parallel version
of fold that operates over a set of channels. This allows
the efficient expression of typical data processing opera-
tions, such as a k-way merge sort in which sorted streams
of keys from k channels are combined by selecting ele-
ments with the smallest key. The expression foldt f
o cs aggregates elements from an array of channels cs,
selecting elements according to a function o and aggre-
gating according to a function f. As f must be commuta-
tive and associative, the aggregation can be performed in
parallel, combining elements in a pair-wise manner until
only the result remains.

As shown in Listing 3, the foldt primitive can be
used to implement an application-level network ser-
vice for parallel data aggregation in Hadoop. When-
ever key/value pairs become available from the map-
pers (lines 5–6), foldt is invoked (lines 7–10). El-
ements elem are ordered based on elem.key (line 8),
and values of elements with the same key (e_key) are
merged using a combine function (line 9) to create a new
key/value pair (line 10).While foldt could be expressed
using core language primitives, the FLICK platform has
a custom implementation for performance reasons.

While designed to achieve higher safety and perfor-
mance, the constraints introduced in the design of the
FLICK language, e.g. the lack of support for unbounded
computation or dynamic memory allocation, imply that
not all possible computations can be expressed in FLICK.
For instance, algorithms requiring loops with unbounded
iterations (e.g. while-like loops) cannot be encoded. In
a general purpose programming language, this would be
a severe constraint but for the middlebox functionality
that FLICK targets we have not found this to cause major
limitations.

5 FLICK Platform
The FLICK platform is designed around a task graph ab-
straction, composed of tasks that deserialise input data
to typed values, compute over those values, and serialise
results for onward transmission. The FLICK compiler
translates an input FLICK program to C++, which is in
turn compiled and linked against the platform runtime
for execution. Figure 2 shows an overview of the FLICK
platform, which handles network connections, the task
graph life-cycle, the communication between tasks and
the assignment of tasks to worker threads. Task graphs
exploit task and data parallelism at runtime as tasks are

Program Instance

1 Application dispatcher

Graph dispatcher

2

4

Graph pool
5

Scheduler

Task Queue

Worker Threads

3

6

Figure 2: Main components of the FLICK platform

assigned to worker threads. Even with only one large net-
work flow, serialisation, processing and deserialisation
tasks can be scheduled to run on different CPU cores.

(i) The application dispatcher manages the life-cycle of
TCP connections: first it maps new incoming connec-
tions Ê to a specific program instance Ë, typically based
on the destination port number of the incoming connec-
tion. The application dispatcher manages the listening
sockets that handle incoming connections, creating a new
input channel for each incoming connection and hand-
ing off data from that connection to the correct instance.
When a client closes an input TCP connection, the ap-
plication dispatcher indicates this to the instance; when
a task graph has no more active input channels, it is shut
down. New connections are directly connected to exist-
ing task graphs Ì.

(ii) The graph dispatcher assigns incoming connections
to task graphs Í, instantiating a new one if none suitable
exists. The platform maintains a pre-allocated pool of
task graphs to avoid the overhead of construction Î. The
graph dispatcher also creates new output channel connec-
tions to forward processed traffic.

(iii) Tasks are cooperatively scheduled by the sched-
uler, which allocates work among a fixed number of
worker threads Ï. The number of worker threads is de-
termined by the number of CPU cores available, and
worker threads are pinned to CPU cores.

Tasks in a task graph become runnable after receiv-
ing data in their input queues (either from the network or
from another task). A task that is not currently executing
or scheduled is added to a worker queue when it becomes
runnable. All buffers are drawn from a pre-allocated pool
to avoid dynamic memory allocation. Input tasks use
non-blocking sockets and epoll event handlers to pro-
cess socket events. When a socket becomes readable, the
input task attached to the relevant socket is scheduled to
handle the event.

For scheduling, each worker thread is associated with
its own FIFO task queue. Each task within a task graph
has a unique identifier, and a hash over this identifier de-

7



input
task

compute
task

output
task

input
channel

output
channeltask

channel

(a) HTTP load balancer (b) Memcached proxy (c) Hadoop data aggregator

Figure 3: Task graphs for different application-specific network services

termines which worker’s task queue the task should be
assigned to. When a task is to be scheduled, it is always
added to the same queue to reduce cache misses.

Each worker thread picks a task from its own queue.
If its queue is empty, the worker attempts to scavenge
work from other queues and, if none is found, it sleeps
until new work arrives. A worker thread runs a task un-
til either all its input data is consumed, or it exceeds
a system-defined time quantum, the timeslice threshold
(typically, 10–100 µs; see §6). If the timeslice threshold
is exceeded, the code generated by the FLICK compiler
guarantees that the task re-enters the scheduler, placing
itself at the back of the queue if it has remaining work
to do. A task with no work is not added to the task
queue, but when new items arrive in its input channels, it
is scheduled again.

A disadvantage of allocating tasks belonging to the
same task graphs onto different CPU cores is that this
would incur several cache invalidations as data move
from one core to another. On the other hand, our design
enables higher parallelism as different tasks can execute
concurrently in a pipelined fashion, leading to higher
throughput.

Some middlebox services must handle many concur-
rent connections, and they frequently write and read
small amounts of data. The kernel TCP stack has a
high overhead for creating and destroying sockets to sup-
port the Linux Virtual File System (VFS) interface [17].
Socket APIs also require switching between user- and
kernel-mode, which adds further overhead. As a result,
the FLICK platform uses mTCP [21], a highly scalable
user-space TCP stack, combined with Intel’s DPDK [20]
to reduce these overheads. The original mTCP imple-
mentation did not support multi-threaded applications,
and we modified mTCP so that Flick I/O tasks can ac-
cess sockets independently. To take utilise the efficient
DPDK runtime environment, mTCP executes as a DPDK
task. All of these optimisations, significantly improve
performance for network-bound services (see §6.3).

6 Evaluation
The goals of our evaluation are to investigate whether the
high-level programming abstraction that FLICK carries a
performance and scalability cost and whether DPDK and

mTCP improve performance. We implement FLICK pro-
grams for the use cases introduced in §2.1, i.e. an HTTP
load balancer, a Memcached proxy and a Hadoop data
aggregator, and compare their performance against base-
lines from existing implementations.

After describing the implementation of our use
cases (§6.1) and the experimental set-up (§6.2), we ex-
plore the performance and scalability of FLICK (§6.3).
After that, we examine how well the FLICK platform iso-
lates resource consumption of multiple FLICK programs
using cooperative scheduling (§6.4).

6.1 Use case implementation
For our three use cases, Figure 3 shows the task graph
obtained from the corresponding FLICK program.

HTTP load balancer. This FLICK program implements
an HTTP load balancer that forwards each incoming
HTTP request to one of a number of backend web
servers. Forwarding is based on a naive hash of the
source IP and port and destination IP and port. Figure 3a
shows the corresponding task graph. The application dis-
patcher forwards each new TCP connection received on
port 80 to the graph dispatcher. The graph dispatcher
creates a new task graph, which is later destroyed when
the connection closes. The input task deserialises the in-
coming data into HTTP requests. For the first request, the
compute task calculates a hash value selecting a backend
server for the request. Subsequent requests on the same
connection are forwarded to the same backend server. On
their return path no computation or parsing is needed,
and the data is forwarded without change. We also imple-
ment a variant of the HTTP load balancer that does not
use backend servers but which returns a fixed response
to a given request. This is effectively a static web server,
which we use to test the system without backends.

Memcached proxy. In this use case, the FLICK pro-
gram (Listing 1) receives Memcached look-up requests
for keys. Requests are forwarded based on hash parti-
tioning to a set of Memcached servers, each storing a dis-
joint section of the key space. Responses received from
the Memcached servers are returned to clients.

Figure 3b shows the corresponding task graph. As
before, a new task graph is created for each new TCP
connection. Unlike the HTTP load balancer, requests

8



from the same client can be dispatched to different Mem-
cached servers, which means that the compute task must
have a fan-out greater than one.

When a request is received on the input channel, it is
deserialised by the input task. The deserialisation code
is automatically generated from the type specification
in Listing 2. The deserialiser task outputs the Mem-
cached request object, containing the request keys and
body, which are passed on to the compute task. The com-
pute task implements the dispatching logic. It identifies
the Memcached server responsible for that key and for-
wards the request to it through the serialiser task. When
the response is received from the Memcached server, the
deserialiser task deserialises it and passes the response
object to the compute task, which returns it to the client
through the serialiser task.
Hadoop data aggregator. The Hadoop data aggregator
implements the combiner function of a map/reduce job
to perform early data aggregation in the network, as de-
scribed in §2.1. It is implemented in FLICK according to
Listing 3. We focus on a wordcount job in which the
combiner function aggregates word counters produced
by mappers over a set of documents.

For each Hadoop job, the platform creates a separate
task graph per reducer (Figure 3c). The input tasks dese-
rialise the stream of intermediate results (i.e. key/value
pairs) from the mappers. Compute tasks combine the
data with each compute task taking two input streams
and producing one output. The output task converts the
data to the byte stream, as per the Hadoop wire format.

6.2 Experimental set-up
We deploy the prototype implementation of the FLICK
platform on servers with two 8-core Xeon E5-2690 CPUs
running at 2.9 Ghz with 32 GB of memory. Clients
and back-end machines are deployed on a cluster of
16 machines with 4-core Xeon E3-1240 CPUs run-
ning at 3.3 Ghz. All machines use Ubuntu Linux ver-
sion 12.04. The clients and backend machines have
1 Gbps NICs, and the servers executing the FLICK plat-
form have 10 Gbps NICs. The client and backend ma-
chines connect to a 1 Gbps switch, and the FLICK plat-
form connects to a 10 Gbps switch. The switches have
a 20 Gbps connection between them. We examine the
performance of FLICK with and without mTCP/DPDK.

To evaluate the performance of the HTTP load bal-
ancer, we use multiple instances of ApacheBench
(ab) [4], a standard tool for measuring web server per-
formance, together with 10 backend servers that run the
Apache web server [51]. Throughput is measured in
terms of connections per second as well as requests per
second for HTTP keep-alive connections. We compare
against the standard Apache (mod_proxy_balancer) and
the Nginx [35] load balancers.

For the Memcached proxy, we deploy 128 clients
running libmemcached [1], a standard client library
for interacting with Memcached servers. We use
10 Memcached servers as backends and compare the
performance against a production Memcached proxy,
Moxi [32]. We measure performance in terms of through-
put (i.e. requests served per second) and request latency.
Clients send a single request and wait for a response be-
fore sending the next request.

For the Hadoop data aggregator, the workload is a
wordcount job. It uses a sum as the aggregation computa-
tion and an input dataset with a high data reduction ratio.
The datasets used in experiments are 8 GB, 12 GB and
16 GB (larger data sets were also used for validation).
Here we measure performance in terms of the absolute
network throughput.

In all graphs, the plotted points are the mean of five
runs with identical parameters. Error bars correspond to
a 95% confidence interval.

6.3 Performance
HTTP load balancer. We begin by measuring the per-
formance of the static web server with an increasing load.
This exercises the following components of the FLICK
platform: HTTP parsing, internal and external chan-
nel operation and task scheduling. The results are for
100 to 1,600 concurrent connections (above these loads,
Apache and Nginx begin to suffer timeouts). Across the
entire workload, FLICK achieves superior performance.
It achieves a peak throughput of 306,000 requests/sec
for the kernel version and 380,000 requests/sec with
mTCP. The maximum throughput achieved by Apache
is 159,000 requests/sec and by Nginx is 217,000 re-
quests/sec. FLICK also shows lower latency, particu-
larly at high concurrency when Apache and Nginx use
large numbers of threads. This confirms that, while
FLICK provides a general-purpose platform for creating
application-specific network functions, it can outperform
purpose-written services.

To investigate the per-flow overhead due to TCP set-
up/tear-down, we also repeat the same experiment but
with each web request establishing a separate TCP con-
nection (i.e. non-persistent HTTP). This reduces the
throughput in all deployments: 35,000 requests/sec for
Apache; 44,000 requests/sec for Nginx; and 45,000 re-
quests/sec for FLICK, which maintains the lowest la-
tency. Here the kernel TCP performance for connection
set-up and tear-down is a bottleneck: the mTCP version
of FLICK handles up to 193,000 requests/sec.

Next, we repeat the experiment using our HTTP load
balancer implementation to explore the impact of both
receiving and forwarding requests. The set-up is as de-
scribed in §6.2. We use small HTTP payloads (137 bytes
each) to ensure that the network and the backends are

9



●
●

● ● ●
100

200

300

100 200 400 800 1600
Concurrent clients

T
ho

us
an

d 
re

qs
/s

● FLICK FLICK mTCP Apache Nginx

(a) Throughput (persistent connections)

● ●
●

●

●

0

10

20

100 200 400 800 1600
Concurrent clients

M
ea

n 
la

te
nc

y 
(m

s) ● FLICK
FLICK mTCP
Apache
Nginx

(b) Latency (persistent connections)

● ● ● ● ●

0

25

50

75

100

100 200 400 800 1600
Concurrent clients

T
ho

us
an

d 
re

qs
/s

● FLICK FLICK mTCP Apache Nginx

(c) Throughput (non-persistent connections)

●
●

●

●

●

0

20

40

60

80

100 200 400 800 1600
Concurrent clients

M
ea

n 
la

te
nc

y 
(m

s) ● FLICK
FLICK mTCP
Apache
Nginx

(d) Latency (non-persistent connections)

Figure 4: HTTP load balancer throughput and latency for an increasing number of concurrent connections

never the bottleneck. As for the web server experiment,
we first consider persistent connections. Figures 4a
and 4b confirm the previous results: FLICK achieves up
to 1.4× higher throughput than Nginx and 2.2× higher
than Apache. Using mTCP, the performance is even bet-
ter with higher throughput and lower latency: FLICK
achieves a maximum throughput 2.7× higher than Ng-
inx and 4.2× higher than Apache. In all cases, FLICK
has lower latency.

With non-persistent connections, the kernel version
of FLICK exhibits a lower throughput than Apache and
Nginx (see Figure 4c). Both Apache and Nginx keep
persistent TCP connections to the backends, but FLICK
does not, which increases its connection set-up/tear-
down cost. When mTCP is used with its lower per con-
nection cost, FLICK shows better performance than ei-
ther with a maximum throughput 2.5× higher than that of
Nginx and 2.1× higher than that of Apache. In addition,
both the kernel and mTCP versions of FLICK maintain
the lowest latency of the systems, as shown in Figure 4d.

Memcached proxy. For the Memcached proxy use
case, we compare the performance of FLICK against
Moxi [32], as we increase the number of CPU cores. We
chose Moxi because it supports the binary Memcached
protocol and is multi-threaded. In our set-up, 128 clients
make concurrent requests using the Memcached binary
protocol over persistent connections, which are then mul-
tiplexed to the backends.

Figures 5a and 5b show the throughput, in terms of
the number of requests/sec, and the latency, respectively.

With more CPU cores, the throughout initially increases
for both systems. The kernel version achieves a max-
imum throughput of 126,000 requests/sec with 8 CPU
cores and the mTCP version achieves 198,000 request-
s/sec with 16 CPU cores. Moxi peaks at 82,000 request-
s/sec with 4 CPU cores. FLICK’s latency decreases with
more CPU cores due to the larger processing capacity
available in the system. The latency of Moxi beyond
4 CPU cores and FLICK’s beyond 8 CPU cores increases
as threads compete over common data structures.

Hadoop data aggregator. The previous use cases had
relatively simple task graphs (see Figure 3) and consid-
erable overhead comes from the connection set-up and
tear-down, with many network requests processed in par-
allel. In contrast, the Hadoop data aggregator use case
has a more complex task graph, and we use it to as-
sess the overhead of FLICK’s communication channels
and intra-graph scheduling. Here the tasks are compute
bound, and the impact of the network overhead is limited.
We only present the kernel results because the mTCP re-
sults are similar.

We deploy 8 mappers clients, each with 1 Gbps con-
nections, to connect to the FLICK server. The task graph
therefore has 16 tasks (8 input, 7 processing and 1 out-
put). The FLICK Hadoop data aggregator runs on a
server with 16 CPU cores without hyper-threading.

Figure 6 shows that FLICK scales well with the num-
ber of CPU cores, achieving a maximum throughput of
7,513 Mbps with 16 CPU cores. This is the maximum
capacity of the 8 network links (once accounted for TCP

10



●

●

●

●

●

0

50

100

150

200

250

1 2 4 8 16
CPU cores

T
ho

us
an

d 
re

qs
/s

● FLICK
FLICK mTCP
Moxi

(a) Throughput

●

●

●
●

●

0

1

2

3

4

1 2 4 8 16
CPU cores

M
ea

n 
la

te
nc

y 
(m

s)

● FLICK
FLICK mTCP
Moxi

(b) Latency

Figure 5: Memcached proxy throughput and latency
versus number of CPU cores used

●
●

●
●

●
Maximum throughput

0

2000

4000

6000

8000

1 2 4 8 16
CPU cores

T
hr

ou
gh

pu
t M

b/
s

● WC 8 char
WC 12 char
WC 16 char

Figure 6: Median throughput for Hadoop data aggre-
gator versus number of CPU cores

overhead), and matches measurements from iperf. We
conclude that the FLICK platform can exploit the high
level of parallelism of multi-core servers and efficiently
schedule multiple tasks concurrently to maximise net-
work throughput.

The results in Figure 6 represent three data sets of
8 GB, 12 GB and 16 GB mentioned in §6.2, consisting
of words of 8, 12 and 16 characters, respectively. The
FLICK platform can more efficiently process the longer
words because they comprise fewer key value pairs.

6.4 Resource sharing
We finish our experiments by examining the ability of
the FLICK platform to ensure efficient resource sharing,
as described in §3.1. For this, we use a micro-benchmark
running 200 tasks. Each task consumes a finite number
of data items, computing a simple addition for each in-
put byte. The tasks are equally split between two classes:

0

20

40

60

Cooperative Non cooperative Round robin
Scheduling policy

C
om

pl
et

io
n 

tim
e 

(s
) Light

Heavy

Figure 7: Completion time for “light" and “heavy"
tasks with three scheduling policies

light tasks operate on 1 KB data items; and heavy tasks
operate on 16 KB data items. We consider three schedul-
ing policies: (i) cooperative is the policy used by FLICK,
in which each task is given a fixed amount of CPU
time before it yields control to another task; (ii) non-
cooperative runs a scheduled task to completion, poten-
tially letting the OS scheduler preempt it; and (iii) round
robin schedules each task for one data item only.

Figure 7 shows the total completion time for light and
heavy tasks. Since the light tasks handle less data, they
should, given a fair share of resources, finish before the
heavy tasks. With the round robin policy, this does not
happen: the heavy tasks take longer to process one data
item. Each time they are scheduled, they occupy the
worker thread for longer than a light task. Conversely,
with the non-cooperative policy, each task runs to com-
pletion. The total completion time for the light and heavy
tasks is determined by their scheduling order. However,
with FLICK’s cooperative policy, the light tasks are al-
lowed to complete ahead of the heavy tasks without in-
creasing the overall runtime—each task is given a fair
share of the CPU time.

7 Related Work
Network programming languages are essential to the
usability and scalability of software-defined network-
ing (SDN), allowing high-level configuration logic to be
translated to low-level network operations. Inspired by
Frenetic [16], NetKAT [2] is a high-level network pro-
gramming language based on Kleene algebra [25], in
which network policies are compiled into a low-level
programming abstraction such as OpenFlow [31] flow ta-
bles. Similarly, the Policy Graph Abstraction (PGA) [41]
expresses network policies as a coherent, conflict-free
policy set and supports automated, correct and indepen-
dent composition of middlebox policies. These systems
focus on network management and configuration and not
on the more expressive programs for application-specific
network services that are targeted by FLICK.

FLICK ensures that programs execute in a timely man-
ner by restricting the expressiveness of the programming
language. Another possible approach is to explicitly ver-

11



ify that a specific program meets requirements. This ver-
ification apparoach has been used to check simple, state-
less Click pipelines [12] but might be harder for more
complex middlebox programs.

There are proposed extensions to the packet process-
ing done by OpenFlow. P4 [8] is a platform- and
protocol-independent language for packet processors,
which allows the definition of new header fields and pro-
tocols for use in match/action tables. Protocol Oblivious
Forwarding (POF) [47] also provides a flexible means to
match against and rewrite packet header fields. Packet
Language for Active Networks (PLAN) [18] is a state-
less and strongly-typed functional language for active
networking in which packets carry programs to network
nodes for execution. In general, these approaches are
limited to expressing control-plane processing of pack-
ets in contrast to FLICK, which deals with application
layer data.
Software middlebox platforms. Recently network ser-
vices have been deployed on commodity hardware to
reduce costs and increase flexibility. Click [24] pro-
cesses packets through a chain of installed elements,
and it supports a wide variety of predefined elements.
Programmers, however, must write new elements in
C++, which can be error-prone. ClickOS [30] com-
bines Click with MiniOS and focuses on the consol-
idation of multiple software middlebox VMs onto a
single server. It overcomes current hypervisor limita-
tions through a redesigned I/O system and by replacing
Open vSwitch [38] with a new software switch based
on VALE [45]. ClickOS targets packet level process-
ing, e.g. manipulating header fields or filtering packets;
FLICK, by contrast, operates at the application level, and
the approaches can be seen as orthogonal. It would be
challenging for ClickOS to parse and process HTTP data
when a single data item may span multiple packets or
Memcached data when a packet may contain multiple
data items.

Merlin [48] is a language that safely translates poli-
cies, expressed as regular expressions for encoding paths,
into Click scripts. Similarly, IN-NET [49] is an architec-
ture for the deployment of custom in-network process-
ing on ClickOS with an emphasis on static checking for
policy safety. In a similar vein, xOMB [3] provides a
modular processing pipeline with user-defined logic for
flow-oriented packet processing. FlowOS [7] is a flow-
oriented programmable platform for middleboxes using
a C API similar to the traditional socket interface. It uses
kernel threads to execute flow-processing modules with-
out terminating TCP connections. Similar to ClickOS,
these platforms focus on packet processing rather than
the application level. SmartSwitch [53] is a platform for
high-performance middlebox applications built on top of
NetVM [19], but it only supports UDP applications, and

it does not offer a high-level programming model.
Eden is a platform to execute application-aware net-

work services at the end hosts [5]. It uses a domain-
specific language, similar to F#, and enables users to im-
plement different services ranging from load balancing to
flow prioritisation. By operating at the end hosts, it limits
the set of network services that can be supported. For ex-
ample, it would be impossible to implement in-network
aggregation or in-network caching.

Split/Merge [42] is a hypervisor-level mechanism that
allows balanced, stateful elasticity and migration of flow
state for virtual middleboxes. Per-flow migration is ac-
complished by identifying the external state of network
flows, which has to be split among replicas. Similar elas-
ticity support could be integrated with FLICK.

8 Conclusions
Existing platforms for in-network processing typically
provide a low-level, packet-based API. This makes it
hard to implement application-specific network services.
In addition, they lack support for low-overhead perfor-
mance isolation, thus preventing efficient consolidation.

To address these challenges, we have developed
FLICK, a domain-specific language and supporting plat-
form that provides developers with high-level primitives
to write generic application-specific network services.
We described FLICK’s programming model and runtime
platform. FLICK realises processing logic as restricted
cooperatively schedulable tasks, allowing it to exploit the
available parallelism of multi-core CPUs. We evaluated
FLICK through three representative use cases, an HTTP
load balancer, a Memcached proxy and a Hadoop data
aggregator. Our results showed that FLICK greatly re-
duces the development effort, while achieving better per-
formance than specialised middlebox implementations.

References
[1] AKER, B. libmemcached. http://libmemcached.org/

libMemcached.html.

[2] ANDERSON, C. J., FOSTER, N., GUHA, A., JEANNIN, J.-B.,
KOZEN, D., SCHLESINGER, C., AND WALKER, D. NetKAT:
Semantic Foundations for Networks. In Proc. 41th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL) (2014).

[3] ANDERSON, J. W., BRAUD, R., KAPOOR, R., PORTER, G.,
AND VAHDAT, A. xOMB: Extensible Open Middleboxes with
Commodity Servers . In Proc. 8th ACM/IEEE Symposium on Ar-
chitectures for Networking and Communications Systems (ANCS)
(2012).

[4] APACHE FOUNDATION. Apache HTTP Server Benchmark-
ing Tool, 2015. https://httpd.apache.org/docs/2.2/
programs/ab.html.

[5] BALLANI, H., COSTA, P., GKANTSIDIS, C., GROSVENOR,
M. P., KARAGIANNIS, T., KOROMILAS, L., AND O’SHEA, G.
Enabling End-host Network Functions. In Proc. of ACM SIG-
COMM (2015).

12

http://libmemcached.org/libMemcached.html
http://libmemcached.org/libMemcached.html
https://httpd.apache.org/docs/2.2/programs/ab.html
https://httpd.apache.org/docs/2.2/programs/ab.html


[6] BANGERT, J., AND ZELDOVICH, N. Nail: A Practical Tool for
Parsing and Generating Data Formats. In Proc. 11th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI) (2014).

[7] BEZAHAF, M., ALIM, A., AND MATHY, L. FlowOS: A Flow-
based Platform for Middleboxes. In Proc. 9th International Con-
ference on emerging Networking EXperiments and Technologies
(CoNEXT) (2013).

[8] BOSSHART, P., DALY, D., GIBB, G., IZZARD, M., MCKEOWN,
N., REXFORD, J., SCHLESINGER, C., TALAYCO, D., VAH-
DAT, A., VARGHESE, G., AND WALKER, D. P4: Programming
Protocol-Independent Packet Processors. ACM SIGCOMM Com-
puter Communication Review 44, 3 (2014), 87–95.

[9] CHOWDHURY, M., KANDULA, S., AND STOICA, I. Leveraging
Endpoint Flexibility in Data-intensive Clusters. In Proc. of ACM
SIGCOMM (2013).

[10] COSTA, P., MIGLIAVACCA, M., PIETZUCH, P., AND WOLF,
A. L. NaaS: Network-as-a-Service in the Cloud. In Proc. 2nd
USENIX Workshop on Hot Topics in Management of Internet,
Cloud, and Enterprise Networks and Services (Hot-ICE) (2012).

[11] DAGAND, P.-E., BAUMANN, A., AND ROSCOE, T. Filet-o-fish:
Practical and Dependable Domain-specific Languages for OS De-
velopment. SIGOPS Oper. Syst. Rev. 43, 4 (2010), 35–39.

[12] DOBRESCU, M., AND ARGYRAKI, K. Software dataplane ver-
ification. In Proc. USENIX Networked Systems Design and Im-
plementation (NSDI) (2014), pp. 101–114.

[13] DONOVAN, S., AND FEAMSTER, N. Intentional Network Mon-
itoring: Finding the Needle without Capturing the Haystack. In
Proc. 13th ACM Workshop on Hot Topics in Networks (HotNets)
(2014).

[14] FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MAS-
INTER, L., LEACH, P., AND BERNERS-LEE, T. Hypertext
Transfer Protocol – HTTP/1.1, June 1999. http://ietf.org/
rfc/rfc2616.txt.

[15] FITZPATRICK, B. Distributed Caching with Memcached. Linux
Journal 2004, 124 (2004).

[16] FOSTER, N., HARRISON, R., FREEDMAN, M. J., MONSANTO,
C., REXFORD, J., STORY, A., AND WALKER, D. Frenetic: A
Network Programming Language. In Proc. 16th ACM SIGPLAN
International Conference on Functional Programming (ICFP)
(2011).

[17] HAN, S., MARSHALL, S., CHUN, B.-G., AND RATNASAMY, S.
MegaPipe: A New Programming Interface for Scalable Network
I/O. In Proc. 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI) (2012).

[18] HICKS, M., KAKKAR, P., MOORE, J. T., GUNTER, C. A., AND
NETTLES, S. PLAN: A Packet Language for Active Networks.
In Proc. 3rd ACM SIGPLAN International Conference on Func-
tional Programming (ICFP) (1998).

[19] HWANG, J., RAMAKRISHNAN, K. K., AND WOOD, T. NetVM:
High Performance and Flexible Networking Using Virtualization
on Commodity Platforms. In Proc. 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI) (2014).

[20] INTEL. Intel Data Plane Development Kit (DPDK).
http://www.intel.com/go/dpdk, 2014.

[21] JEONG, E. Y., WOO, S., JAMSHED, M., JEONG, H., IHM, S.,
HAN, D., AND PARK, K. mTCP: A Highly Scalable User-level
TCP Stack for Multicore Systems. In Proc. 11th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI)
(2014).

[22] JIM, T., MORRISETT, J. G., GROSSMAN, D., HICKS, M. W.,
CHENEY, J., AND WANG, Y. Cyclone: A Safe Dialect of C. In
Proc. USENIX Annual Technical Conference (ATC) (2002).

[23] KHAYYAT, Z., AWARA, K., ALONAZI, A., JAMJOOM, H.,
WILLIAMS, D., AND KALNIS, P. Mizan: A System for Dy-
namic Load Balancing in Large-scale Graph Processing. In Proc.
European Conference on Computer Systems (EuroSys) (2013).

[24] KOHLER, E., MORRIS, R., , CHEN, B., JANNOTTI, J., AND
KAASHOEKBENJIE, M. F. The Click Modular Router. ACM
Transactions on Computer Systems 18, 3 (2000), 263–297.

[25] KOZEN, D., AND SMITH, F. Kleene Algebra with Tests: Com-
pleteness and Decidability. In Proc. 10th International Workshop
on Computer Science Logic (CSL) (1996).

[26] LOO, B. T., CONDIE, T., GAROFALAKIS, M., GAY, D. E.,
HELLERSTEIN, J. M., MANIATIS, P., RAMAKRISHNAN, R.,
ROSCOE, T., AND STOICA, I. Declarative Networking. Com-
mun. ACM 52, 11 (2009), 87–95.

[27] MAAS, M., ASANOVIĆ, K., HARRIS, T., AND KUBIATOWICZ,
J. The Case for the Holistic Language Runtime System. In Proc.
1st International Workshop on Rack-scale Computing (WRSC)
(2014).

[28] MADHAVAPEDDY, A., HO, A., DEEGAN, T., SCOTT, D., AND
SOHAN, R. Melange: Creating a “Functional” Internet. SIGOPS
Oper. Syst. Rev. 41, 3 (2007), 101–114.

[29] MAI, L., RUPPRECHT, L., ALIM, A., COSTA, P., MIGLI-
AVACCA, M., PIETZUCH, P., AND WOLF, A. L. NetAgg:
Using Middleboxes for Application-specific On-path Aggrega-
tion in Data Centres. In Proc. 10th International Conference on
emerging Networking EXperiments and Technologies (CoNEXT)
(2014).

[30] MARTINS, J., AHMED, M., RAICIU, C., OLTEANU, V.,
HONDA, M., BIFULCO, R., AND HUICI, F. ClickOS and the
Art of Network Function Virtualization. In Proc. 11th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI) (2014).

[31] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H.,
PARULKAR, G., PETERSON, L., REXFORD, J., SHENKER, S.,
AND TURNER, J. OpenFlow: Enabling Innovation in Campus
Networks. ACM SIGCOMM Computer Communication Review
38, 2 (2008), 69–74.

[32] MEMBASE. Moxi – Memcached Router/Proxy, 2015. https:
//github.com/membase/moxi/wiki.

[33] MONSANTO, C., REICH, J., FOSTER, N., REXFORD, J., AND
WALKER, D. Composing Software-defined Networks. In Proc.
10th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI) (2013).

[34] NETFLIX. Ribbon Wiki. https://github.com/Netflix/
ribbon/wiki.

[35] NGINX Website. http://nginx.org/.

[36] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M.,
LEE, H., LI, H. C., MCELROY, R., PALECZNY, M., PEEK,
D., SAAB, P., STAFFORD, D., TUNG, T., AND VENKATARA-
MANI, V. Scaling Memcache at Facebook. In Proc. 10th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI) (2013).

[37] OLSTON, C., REED, B., SRIVASTAVA, U., KUMAR, R., AND
TOMKINS, A. Pig Latin: A Not-so-foreign Language for Data
Processing. In Proc. ACM SIGMOD International Conference
on Management of Data (SIGMOD) (2008).

[38] Open vSwitch. http://openvswitch.org/.

[39] PANG, R., PAXSON, V., SOMMER, R., AND PETERSON, L.
Binpac: A Yacc for Writing Application Protocol Parsers. In
Proc. 6th ACM SIGCOMM Conference on Internet Measurement
(IMC) (2006).

13

http://ietf.org/rfc/rfc2616.txt
http://ietf.org/rfc/rfc2616.txt
https://github.com/membase/moxi/wiki
https://github.com/membase/moxi/wiki
https://github.com/Netflix/ribbon/wiki
https://github.com/Netflix/ribbon/wiki
http://nginx.org/
http://openvswitch.org/


[40] PATEL, P., BANSAL, D., YUAN, L., MURTHY, A., GREEN-
BERG, A., MALTZ, D. A., KERN, R., KUMAR, H., ZIKOS, M.,
WU, H., KIM, C., AND KARRI, N. Ananta: Cloud Scale Load
Balancing. In Proc. of ACM SIGCOMM (2013).

[41] PRAKASH, C., LEE, J., TURNER, Y., KANG, J.-M., AKELLA,
A., BANERJEE, S., CLARK, C., MA, Y., SHARMA, P., AND
ZHANG, Y. PGA: Using Graphs to Express and Automatically
Reconcile Network Policies. In Proc. of ACM SIGCOMM (2015).

[42] RAJAGOPALAN, S., WILLIAMS, D., JAMJOOM, H., AND
WARFIELD, A. Split/Merge: System Support for Elastic Exe-
cution in Virtual Middleboxes. In Proc. 10th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI)
(2013).

[43] RIZZO, L. Netmap: A Novel Framework for Fast Packet I/O. In
Proc. USENIX Annual Technical Conference (ATC) (2012).

[44] RIZZO, L., CARBONE, M., AND CATALLI, G. Transparent
Acceleration of Software Packet Forwarding Using Netmap. In
Proc. IEEE International Conference on Computer Communica-
tions (INFOCOM) (2012).

[45] RIZZO, L., AND LETTIERI, G. VALE, a Switched Ethernet
for Virtual Machines. In Proc. 8th International Conference on
emerging Networking EXperiments and Technologies (CoNEXT)
(2012).

[46] SOMMER, R., WEAVER, N., AND PAXSON, V. HILTI: An
Abstract Execution Environment for High-Performance Network
Traffic Analysis. In Proc. 14th ACM SIGCOMM Conference on
Internet Measurement (IMC) (2014).

[47] SONG, H. Protocol-oblivious Forwarding: Unleash the Power
of SDN Through a Future-proof Forwarding Plane. In Proc. 2nd
ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking (HotSDN) (2013).

[48] SOULÉ, R., BASU, S., MARANDI, P. J., PEDONE, F., KLEIN-
BERG, R., SIRER, E. G., AND FOSTER, N. Merlin: A Language
for Provisioning Network Resources. In Proc. 10th International
Conference on emerging Networking EXperiments and Technolo-
gies (CoNEXT) (2014).

[49] STOENESCU, R., OLTEANU, V., POPOVICI, M., AHMED, M.,
MARTINS, J., BIFULCO, R., MANCO, F., HUICI, F., SMARAG-
DAKIS, G., HANDLEY, M., AND RAICIU, C. In-Net: In-
Network Processing for the Masses. In Proc. European Confer-
ence on Computer Systems (EuroSys) (2015).

[50] STONE, E. Memcache Binary Protocol, 2009. https://code.
google.com/p/memcached/wiki/BinaryProtocolRevamped.

[51] THE APACHE SOFTWARE FOUNDATION. The Apache HTTP
Server Project. http://httpd.apache.org/.

[52] TWITTER. Twemproxy (nutcracker). https://github.com/
twitter/twemproxy.

[53] ZHANG, W., WOOD, T., RAMAKRISHNAN, K., AND HWANG,
J. SmartSwitch: Blurring the Line Between Network Infrastruc-
ture & Cloud Applications. In Proc. 6th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud) (2014).

[54] Apache Hadoop. http://hadoop.apache.org.

14

https://code.google.com/p/memcached/wiki/BinaryProtocolRevamped
https://code.google.com/p/memcached/wiki/BinaryProtocolRevamped
http://httpd.apache.org/
https://github.com/twitter/twemproxy
https://github.com/twitter/twemproxy
http://hadoop.apache.org

	Introduction
	Application-Specific Network Services
	Use cases
	Existing solution space

	Flick Framework
	Requirements
	Overview

	FLICK Programming Model
	Overview
	Supporting application data types
	Primitives and compilation

	Flick Platform
	Evaluation
	Use case implementation
	Experimental set-up
	Performance
	Resource sharing

	Related Work
	Conclusions

