218 research outputs found

    SMA applications in an innovative multishot deployment mechanism

    Get PDF
    An innovative Deployment and Retraction hinge Mechanism (DARM) in the frame of a technological program is examined. The mechanism includes two restraint/release devices, which enable it to be stable in its stowed or deployed position while sustaining all associated loads, and to carry its payload by remote command. The main characteristics of the DARM are as follows: deployment and retraction movements are spring actuated; the available amount of functional sequences is almost unlimited; and no use of electrical motors is made. These features were accomplished by: the application of a special kinematic scheme to the mechanical connection between the spring motor and the swivel head arm; and the use of shape memory alloys (SMA) actuators for both release and spring recharge functions. DARM is thus a mechanism which can find many applications in the general space scenario of in-orbit maintenance and servicing. In such a frame, the DARM typical concept, which has a design close to very simple one-shot deployment mechanisms, has a good chance to replace existing analog machines. Potential items that could be moved by DARM are: booms for satellite instruments; antenna reflector tips; entire antenna reflectors; and solar panels

    Fiber Bragg Gratings for Prognostics in Space Applications: A Thermo-Mechanical Characterization of Minimally Invasive Sensing Techniques

    Get PDF
    Upcoming space missions will be characterized by longer duration, higher level of autonomy of the spacecraft and more extensive human presence. These aspects require robust and reliable health monitoring strategies in order to extend the spacecraft operations, increase safety of manned missions and adaptively tailor extended mission profiles according to the actual system health condition. In this context, Prognostics and Health Management (PHM) provide useful tools to determine the system health, estimate its Remaining Useful Life (RUL) and adjust operations to avoid overstressing components. In order to gather the necessary information from the monitored system and estimate its actual health condition and RUL, a distributed network of sensors is needed, measuring heterogeneous quantities with high accuracy and high spatial resolution. Traditional technologies usually require invasive and heavy installations, and prevent fully leveraging the potentialities of PHM algorithms. In this work, we propose the use of optical sensors for strain, temperature and vibration monitoring; an experimental campaign has been carried out to validate this technology, and the results are compared with traditional sensing techniques

    Design, synthesis and biological activity of selective hCAs inhibitors based on 2-(benzylsulfinyl)benzoic acid scaffold

    Get PDF
    A large library of derivatives based on the scaffold of 2-(benzylsulfinyl)benzoic acid were synthesised and tested as atypical inhibitors against four different isoforms of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). The exploration of the chemical space around the main functional groups led to the discovery of selective hCA IX inhibitors in the micromolar/nanomolar range, thus establishing robust structure-activity relationships within this versatile scaffold. HPLC separation of some selected chiral compounds and biological evaluation of the corresponding enantiomers was performed along with molecular modelling studies on the most active derivatives

    Soft-templated NiO–CeO2 mixed oxides for biogas upgrading by direct CO2 methanation

    Get PDF
    The catalytic performance in the direct CO2 methanation of a model biogas is investigated on NiO-CeO2 nanostructured mixed oxides synthesized by the soft-template procedure with different Ni/Ce molar ratios. The samples are thoroughly characterized by means of ICP-AES, XRD, TEM and HR-TEM, N2 physisorption at -196 °C, and H2-TPR. They result to be constituted of CeO2 rounded nanocrystals and of polycrystalline needle-like NiO particles. After a H2-treatment at 400 C for 1 h, the surface basic properties and the metal surface area are also assessed using CO2 adsorption microcalorimetry and H2-pulse chemisorption measurements, respectively. At increasing Ni content the Ni0 surface area increases, while the opposite occurs for the number of basic sites. Using a CO2/CH4/H2 feed, at 11,000 cm3 h-1 gcat-1, CO2 conversions in the 83-89 mol% range and methane selectivities >99.5 mol% are reached at 275 °C and atmospheric pressure, highlighting the very good performances of the investigated catalysts

    Study of Packaging and Installation of FBG Sensors for Monitoring of Aircraft Systems

    Get PDF
    Next generation aircraft systems will feature an ever increasing complexity. In this context, advanced health monitoring strategies will be required to ensure a high level of operations safety as well as a good reliability. Hence, Prognostics and Health Management (PHM) is emerging as an enabling discipline for future advanced aircraft design and operations, with a particular application to Flight Control System (FCS) monitoring. One of the most critical issues for real-time Fault Detection and Identification (FDI) of aircraft FCS is the availability of actuator load measurements. The aerodynamic load on flight control actuators has a significant influence on their dynamic response, and can easily hide the effect of incipient failure precursors. For this reason, real-time monitoring FDI algorithms relying on the comparison between the actual system response and that of a digital twin require either a measure or an estimation of aerodynamic loads. Usually, this quantity is not monitored by a dedicated sensor, since it is not required as a feedback signal by most control logics. A dedicated load sensor for PHM with traditional technologies is not easily feasible: for example, a load cell would be mechanically connected in series with the actuator, adding a potential single failure point and affecting the overall system safety; the use of strain gages on the structure is less accurate, and requires several sensors with individual wiring and complex signal conditioning circuitry. Optical strain sensors based on Fiber Bragg Gratings (FBG) allow indirect load measurement combined with real-time structural monitoring, combining an acceptable increase in complexity and costs with a high robustness. In this preliminary study, we installed an FBG monitoring system on a UAV to assess the feasibility of such technology. Measures of structure deflection were correlated to actuator position and IMU data, to estimate aerodynamic loads

    Solvent-Free Synthesis of Quaternary Oxazolidine-2-thione β3-Amino Ester Analogs

    Get PDF
    A solvent-free organocatalyzed intermolecular cyclization reaction starting from β-substituted γ-hydroxy-α,β-unsaturated esters and aryl isothiocyanates proceeds via an aza-Michael addition to provide previously unknown quaternary oxazolidine-2-thione β3 amino ester analogs. A panel of diversely-substituted esters was investigated, including β,γ-disubstituted examples which provided the target molecules with very high cis diastereoselectivity

    Novel insights on saccharin- and acesulfame-based carbonic anhydrase inhibitors: design, synthesis, modelling investigations and biological activity evaluation

    Get PDF
    A large library of saccharin and acesulfame derivatives has been synthesised and evaluated against four isoforms of human carbonic anhydrase, the two off-targets hCA I/II and the tumour related isoforms hCA IX/XII. Different strategies of scaffold modification have been attempted on both saccharin as well as acesulfame core leading to the obtainment of 60 compounds. Some of them exhibited inhibitory activity in the nanomolar range, albeit some of the performed changes led to either micromolar activity or to its absence, against hCA IX/XII. Molecular modelling studies focused the attention on the binding mode of these compounds to the enzyme. The proposed inhibition mechanism is the anchoring to zinc-bound water molecule. Docking studies along with molecular dynamics also underlined the importance of the compounds flexibility (e.g. achieved through the insertion of methylene group) which favoured potent and selective hCA inhibition

    Continuous-Flow Synthesis of Arylthio-Cyclopropyl Carbonyl Compounds

    Get PDF
    The straightforward, continuous-flow synthesis of cyclopropyl carbaldehydes and ketones has been developed starting from 2-hydroxycyclobutanones and aryl thiols. This acid-catalyzed mediated procedure allows access to the multigram and easily scalable synthesis of cyclopropyl adducts under mild conditions, using reusable Amberlyst-35 as a catalyst. The resins, suitably ground and used for filling steel columns, have been characterized via TGA, ATR, SEM and BET analyses to describe the physical-chemical properties of the packed bed and the continuous-flow system in detail. To highlight the synthetic versatility of the arylthiocyclopropyl carbonyl compounds, a series of selective oxidation reactions have been performed to access sulfoxide and sulfone carbaldehyde cyclopropanes, oxiranes and carboxylic acid derivatives
    • …
    corecore