173 research outputs found

    A New Search Algorithm for Feature Selection in Hyperspectral Remote Sensing Images

    Get PDF
    A new suboptimal search strategy suitable for feature selection in very high-dimensional remote-sensing images (e.g. those acquired by hyperspectral sensors) is proposed. Each solution of the feature selection problem is represented as a binary string that indicates which features are selected and which are disregarded. In turn, each binary string corresponds to a point of a multidimensional binary space. Given a criterion function to evaluate the effectiveness of a selected solution, the proposed strategy is based on the search for constrained local extremes of such a function in the above-defined binary space. In particular, two different algorithms are presented that explore the space of solutions in different ways. These algorithms are compared with the classical sequential forward selection and sequential forward floating selection suboptimal techniques, using hyperspectral remote-sensing images (acquired by the AVIRIS sensor) as a data set. Experimental results point out the effectiveness of both algorithms, which can be regarded as valid alternatives to classical methods, as they allow interesting tradeoffs between the qualities of selected feature subsets and computational cost

    Image fusion techniqes for remote sensing applications

    Get PDF
    Image fusion refers to the acquisition, processing and synergistic combination of information provided by various sensors or by the same sensor in many measuring contexts. The aim of this survey paper is to describe three typical applications of data fusion in remote sensing. The first study case considers the problem of the Synthetic Aperture Radar (SAR) Interferometry, where a pair of antennas are used to obtain an elevation map of the observed scene; the second one refers to the fusion of multisensor and multitemporal (Landsat Thematic Mapper and SAR) images of the same site acquired at different times, by using neural networks; the third one presents a processor to fuse multifrequency, multipolarization and mutiresolution SAR images, based on wavelet transform and multiscale Kalman filter. Each study case presents also results achieved by the proposed techniques applied to real data

    SAR Amplitude Probability Density Function Estimation Based on a Generalized Gaussian Model

    Get PDF
    International audienceIn the context of remotely sensed data analysis, an important problem is the development of accurate models for the statistics of the pixel intensities. Focusing on synthetic aperture radar (SAR) data, this modeling process turns out to be a crucial task, for instance, for classification or for denoising purposes. In this paper, an innovative parametric estimation methodology for SAR amplitude data is proposed that adopts a generalized Gaussian (GG) model for the complex SAR backscattered signal. A closed-form expression for the corresponding amplitude probability density function (PDF) is derived and a specific parameter estimation algorithm is developed in order to deal with the proposed model. Specifically, the recently proposed “method-of-log-cumulants” (MoLC) is applied, which stems from the adoption of the Mellin transform (instead of the usual Fourier transform) in the computation of characteristic functions and from the corresponding generalization of the concepts of moment and cumulant. For the developed GG-based amplitude model, the resulting MoLC estimates turn out to be numerically feasible and are also analytically proved to be consistent. The proposed parametric approach was validated by using several real ERS-1, XSAR, E-SAR, and NASA/JPL airborne SAR images, and the experimental results prove that the method models the amplitude PDF better than several previously proposed parametric models for backscattering phenomena

    A markovian approach to unsupervised change detection with multiresolution and multimodality SAR data

    Get PDF
    In the framework of synthetic aperture radar (SAR) systems, current satellite missions make it possible to acquire images at very high and multiple spatial resolutions with short revisit times. This scenario conveys a remarkable potential in applications to, for instance, environmental monitoring and natural disaster recovery. In this context, data fusion and change detection methodologies play major roles. This paper proposes an unsupervised change detection algorithmfor the challenging case of multimodal SAR data collected by sensors operating atmultiple spatial resolutions. The method is based on Markovian probabilistic graphical models, graph cuts, linear mixtures, generalized Gaussian distributions, Gram-Charlier approximations, maximum likelihood and minimum mean squared error estimation. It benefits from the SAR images acquired at multiple spatial resolutions and with possibly different modalities on the considered acquisition times to generate an output change map at the finest observed resolution. This is accomplished by modeling the statistics of the data at the various spatial scales through appropriate generalized Gaussian distributions and by iteratively estimating a set of virtual images that are defined on the pixel grid at the finest resolution and would be collected if all the sensors could work at that resolution. A Markov random field framework is adopted to address the detection problem by defining an appropriate multimodal energy function that is minimized using graph cuts

    Modeling the statistics of high resolution SAR images

    Get PDF
    In the context of remotely sensed data analysis, a crucial problem is represented by the need to develop accurate models for the statistics of pixel intensities. In this work, we develop a parametric finite mixture model for modelling the statistics of intensities in high resolution Synthetic Aperture Radar (SAR) images. Along with the models we design an efficient parameter estimation scheme by integrating the Stochastic Expectation Maximization scheme and the Method of log-cumulants with an automatic technique to select, for each mixture component, an optimal parametric model taken from a predefined dictionary of parametric probability density functions (pdf). In particular, the proposed dictionary consists of eight most efficient state-of-the-art SAR-specific pdfs: Nakagami, log-normal, generalized Gaussian Rayleigh, Heavy-tailed Rayleigh, Weibull, K-root, Fisher and generalized Gamma. The experiment results with a set of several real SAR (COSMO-SkyMed) images demonstrate the high accuracy of the designed algorithm, both from the viewpoint of a visual comparison of the histograms, and from the viewpoint of quantitive measures such as correlation coefficient (always above 99,5%) . We stress, in particular, that the method proves to be effective on all the considered images, remaining accurate for multimodal and highly heterogeneous images

    SAR amplitude probability density function estimation based on a generalized Gaussian scattering model

    Get PDF
    In the context of remotely sensed data analysis, an important problem is the development of accurate models for the statistics of the pixel intensities. Focusing on Synthetic Aperture Radar (SAR) data, this modelling process turns out to be a crucial task, for instance, for classification or for denoising purposes. In the present report, an innovative parametric estimation methodology for SAR amplitude data is proposed, which takes into account the physical nature of the scattering phenomena generating a SAR image by adopting a generalized Gaussian (GG) model for the backscattering phenomena. A closed form expression for the corresponding amplitude probability density function (PDF) is derived and a specific parameter estimation algorithm is developed in order to deal with the proposed model. Specifically, the recently proposed «method-of-log-cumulants» (MoLC) is applied, which stems from the adoption of the Mellin transform (instead of the usual Fourier transform) in the computation of characteristic functions, and from the corresponding generalization of the concepts of moment and of cumulant. For the developed GG-based amplitude model, the resulting MoLC estimates turn out to be numerically feasible and are also proved to be consistent. The proposed parametric approach is validated using several real ERS-1, XSAR, ESAR and airborne SAR images and the experimental results prove that the method models the amplitude probability density function better than several previously proposed parametric models for the backscattering phenomena

    Dictionary-based Stochastic Expectation-Maximization for SAR amplitude probability density function estimation

    Get PDF
    In the context of remotely sensed data analysis, a crucial problem is represented by the need to develop accurate models for the statistics of the pixel intensities. In the current research report, we address the problem of parametric probability density function (PDF) estimation in the context of Synthetic Aperture Radar (SAR) amplitude data analysis. Specifically, several theoretical and heuristic models for the PDFs of SAR data have been proposed in the literature, and have been proved to be effective for different land-cover typologies, thus making the choice of a single optimal SAR parametric PDF a hard task. In thia report, an innovative estimation algorithm is proposed, which addresses this problem by adopting a finite mixture model (FMM) for the amplitude PDF, with mixture components belonging to a given dictionary of SAR-specific PDFs. The proposed method automatically integrates the procedures of selection of the optimal model for each component, of parameter estimation, and of optimization of the number of components, by combining the Stochastic Expectation Maximization (SEM) iterative methodology and the recently proposed «method-of-log-cumulants» (MoLC) for parametric PDF estimation for non-negative random variables. Experimental results on several real SAR images are presented, showing the proposed method is accurately modelling the statistics of SAR amplitude data

    Automatic extraction of planetary image features

    Get PDF
    A method for the extraction of Lunar data and/or planetary features is provided. The feature extraction method can include one or more image processing techniques, including, but not limited to, a watershed segmentation and/or the generalized Hough Transform. According to some embodiments, the feature extraction method can include extracting features, such as, small rocks. According to some embodiments, small rocks can be extracted by applying a watershed segmentation algorithm to the Canny gradient. According to some embodiments, applying a watershed segmentation algorithm to the Canny gradient can allow regions that appear as close contours in the gradient to be segmented

    Hierarchical Probabilistic Graphical Models and Deep Convolutional Neural Networks for Remote Sensing Image Classification

    Get PDF
    International audienceThe method presented in this paper for semantic segmentation of multiresolution remote sensing images involves convolutional neural networks (CNNs), in particular fully convolutional networks (FCNs), and hierarchical probabilistic graphical models (PGMs). These approaches are combined to overcome the limitations in classification accuracy of CNNs for small or non-exhaustive ground truth (GT) datasets. Hierarchical PGMs, e.g., hierarchical Markov random fields (MRFs), are structured output learning models that exploit information contained at different image scales. This perfectly matches the intrinsically multiscale behavior of the processes of a CNN (e.g., pooling layers). The framework consists of a hierarchical MRF on a quadtree and a planar Markov model on each layer, modeling the interactions among pixels and accounting for both the multiscale and the spatial-contextual information. The marginal posterior mode criterion is used for inference. The adopted FCN is the U-Net and the experimental validation is conducted on the ISPRS 2D Semantic Labeling Challenge Vaihingen dataset, with some modifications to approach the case of scarce GTs and to assess the classification accuracy of the proposed technique. The proposed framework attains a higher recall compared to the considered FCNs, progressively more relevant as the training set is further from the ideal case of exhaustive GTs
    • …
    corecore