3,167 research outputs found

    Deriving the respiratory sinus arrhythmia from the heartbeat time series using Empirical Mode Decomposition

    Full text link
    Heart rate variability (HRV) is a well-known phenomenon whose characteristics are of great clinical relevance in pathophysiologic investigations. In particular, respiration is a powerful modulator of HRV contributing to the oscillations at highest frequency. Like almost all natural phenomena, HRV is the result of many nonlinearly interacting processes; therefore any linear analysis has the potential risk of underestimating, or even missing, a great amount of information content. Recently the technique of Empirical Mode Decomposition (EMD) has been proposed as a new tool for the analysis of nonlinear and nonstationary data. We applied EMD analysis to decompose the heartbeat intervals series, derived from one electrocardiographic (ECG) signal of 13 subjects, into their components in order to identify the modes associated with breathing. After each decomposition the mode showing the highest frequency and the corresponding respiratory signal were Hilbert transformed and the instantaneous phases extracted were then compared. The results obtained indicate a synchronization of order 1:1 between the two series proving the existence of phase and frequency coupling between the component associated with breathing and the respiratory signal itself in all subjects.Comment: 12 pages, 6 figures. Will be published on "Chaos, Solitons and Fractals

    CTprintNet: An Accurate and Stable Deep Unfolding Approach for Few-View CT Reconstruction

    Get PDF
    In this paper, we propose a new deep learning approach based on unfolded neural networks for the reconstruction of X-ray computed tomography images from few views. We start from a model-based approach in a compressed sensing framework, described by the minimization of a least squares function plus an edge-preserving prior on the solution. In particular, the proposed network automatically estimates the internal parameters of a proximal interior point method for the solution of the optimization problem. The numerical tests performed on both a synthetic and a real dataset show the effectiveness of the framework in terms of accuracy and robustness with respect to noise on the input sinogram when compared to other different data-driven approaches

    Migration on request, a practical technique for preservation

    Get PDF
    Maintaining a digital object in a usable state over time is a crucial aspect of digital preservation. Existing methods of preserving have many drawbacks. This paper describes advanced techniques of data migration which can be used to support preservation more accurately and cost effectively. To ensure that preserved works can be rendered on current computer systems over time, “traditional migration” has been used to convert data into current formats. As the new format becomes obsolete another conversion is performed, etcetera. Traditional migration has many inherent problems as errors during transformation propagate throughout future transformations. CAMiLEON’s software longevity principles can be applied to a migration strategy, offering improvements over traditional migration. This new approach is named “Migration on Request.” Migration on Request shifts the burden of preservation onto a single tool, which is maintained over time. Always returning to the original format enables potential errors to be significantly reduced

    Effects of indenter geometry on micro‐scale fracture toughness measurement by Pillar splitting

    Get PDF
    In this presentation, we will show the improvements to a recently developed pillar splitting technique that can be used to characterize the fracture toughness of materials at the micrometer scale. Micro-pillars with different aspect ratios were milled from bulk Si (100) and TiN and CrN thin films, and pillar splitting tests were carried out using four different triangular pyramidal indenters with centerline-to-face angles varying from 35.3° to 65.3°. Cohesive zone finite element modelling (CZ-FEM) was to evaluate the effect of different material parameters and indenter geometries on the splitting behavior. Pillar splitting experiments revealed a linear relationship between the splitting load and the indenter angle, while CZ-FEM simulations provided the dimensionless coefficients needed to estimate the fracture toughness from the splitting load. The results provide novel insights into the fracture toughness of small-scale materials using the pillar spitting technique and provide a simple and reliable way to measure fracture toughness over a broad range of material properties. Please click Additional Files below to see the full abstract

    FIB/SEM and SEM/EDS microstructural analysis of metal-ceramic and zirconia-ceramic interfaces

    Get PDF
    Recently introduced FIB/SEM analysis in microscopy seems to provide a high-resolution characterization of the samples by 3D (FIB) cross-sectioning and (SEM) high resolution imaging. The aim of this study was to apply the FIB/SEM and SEM/EDS analysis to the interfaces of a metal-ceramic vs. two zirconiaceramic systems. Plate samples of three different prosthetic systems were prepared in the dental lab following the manufacturers’ instructions, where metal-ceramic was the result of a ceramic veneering (porcelain-fused-tometal) and the two zirconia- ceramic systems were produced by the dedicated CAD-CAM procedures of the zirconia cores (both with final sintering) and then veneered by layered or heat pressed ceramics. In a FIB/SEM equipment (also called DualBeam), a thin layer of platinum (1ÎŒm) was deposited on samples surface crossing the interfaces, in order to protect them during milling. Then, increasingly deeper trenches were milled by a focused ion beam, first using a relatively higher and later using a lower ion current (from 9 nA to 0.28 nA, 30KV). Finally, FEG-SEM (5KV) micrographs (1000–50,000X) were acquired. In a SEM the analysis of the morphology and internal microstructure was performed by 13KV secondary and backscattered electrons signals (in all the samples). The compositional maps were then performed by EDS probe only in the metal-ceramic system (20kV). Despite the presence of many voids in all the ceramic layers, it was possible to identify: (1) the grain structures of the metallic and zirconia substrates, (2) the thin oxide layer at the metalceramic interface and its interactions with the first ceramic layer (wash technique), (3) the roughness of the two different zirconia cores and their interactions with the ceramic interface, where the presence of zirconia grains in the ceramic layer was reported in two system possibly due to sandblasting before ceramic firing

    Conserved Quantities in f(R)f(R) Gravity via Noether Symmetry

    Full text link
    This paper is devoted to investigate f(R)f(R) gravity using Noether symmetry approach. For this purpose, we consider Friedmann Robertson-Walker (FRW) universe and spherically symmetric spacetimes. The Noether symmetry generators are evaluated for some specific choice of f(R)f(R) models in the presence of gauge term. Further, we calculate the corresponding conserved quantities in each case. Moreover, the importance and stability criteria of these models are discussed.Comment: 14 pages, accepted for publication in Chin. Phys. Let

    Linear and non linear measures of pupil size as a function of hypnotizability

    Get PDF
    Higher arousal and cortical excitability have been observed in high hypnotizable individuals (highs) with respect to low hypnotizables (lows), which may be due to differences in the activation of ascending activating systems. The present study investigated the possible hypnotizability-related difference in the cortical noradrenergic tone sustained by the activity of the Locus Coeruleus which is strongly related to pupil size. This was measured during relaxation in three groups of participants—highs (N = 15), lows (N = 15) and medium hypnotizable individuals (mediums, N = 11)—in the time and frequency domains and through the Recurrence Quantification Analysis. ECG and Skin Conductace (SC) were monitored to extract autonomic indices of relaxation (heart interbeats intervals, parasympathetic component of heart rate variability (RMSSD) and tonic SC (MeanTonicSC). Most variables indicated that participants relaxed throughout the session. Pupil features did not show significant differences between highs, mediums and lows, except for the spectral Band Median Frequency which was higher in mediums than in lows and highs at the beginning, but not at the end of the session.Thus, the present findings of pupil size cannot account for the differences in arousal and motor cortex excitability observed between highs and lows in resting conditions

    Increased incidence of breast cancer in postmenopausal women with high body mass index at the modena screening program

    Get PDF
    Purpose: We conducted a study to evaluate the relationship between body mass index (BMI) and the risk of breast cancer (BC) and outcome in a population of 14,684 women aged 55 to 69 years eligible to participate in the Mammography Screening Program (MSP) in the Province of Modena, Italy. Methods: The study population was drawn from women who underwent mammography screening between 2004 and 2006 in the Province of Modena. Women were subdivided into obese, overweight, and normal-weight categories according to BMI and followed until July 31, 2010, to evaluate the BC incidence. The clinicopathological characteristics of BC were also evaluated in different groups of patients classified according to BMI. After BC diagnosis, patients were followed for a median period of 65 (range, 2\u2013104) months. Second events (recurrences and second tumors) were recorded, and the 5-year event-free survival (EFS) was calculated. Results: After a period of 73 months, 366 cases of BC were diagnosed. Compared with normal-weight women, obese women had a significantly higher incidence of BC (relative risk [RR], 1.32; p= 0.040) (RR=1), larger tumors (27% of tumors were larger than T2 size), and more nodal involvement (38.5% of tumors were node-positive). Furthermore, a significantly higher rate of total events was seen in obese women compared with overweight and normal-weight patients, respectively (17.9% vs. 11.4% vs. 10.8%, p=0.032). The 5-year EFS was 89.0%, 89.0%, and 80.0% for normal-weight, overweight, and obese patients, respectively. Conclusion: We observed a significantly higher risk of BC in obese women among those eligible to participate in the MSP in the Province of Modena. Finally, obese women had more second events and poorer EFS compared to nono bese women

    Spatially resolved depth profiling of residual stress by micro-ring-core method

    Get PDF
    Analysis and control of residual stresses in advanced engineering materials are important issues for reliability assessment at small scales, e.g. for micro-electromechanical systems (MEMS) and nano-crystalline and amorphous bulk and thin film materials. This presentation gives an overview of the recent advances in the field of sub-micron scale residual stress assessment by the use of focused ion beam (FIB)-controlled material removal techniques. Materials and The two step method consists of incremental FIB ring-core milling combined with high-resolution in-situ SEMFEG imaging of the relaxing surface and a full field strain analysis by digital image correlation (DIC). The through-thickness profile of the residual stress can be also obtained by comparison of the experimentally measured surface strain with finite element modelling using Schajer’s integral method. In this presentation, we will review the most recent advances in the field of FIB-DIC methods for residual stress assessment at the micro and nano scales, with focus on recent efforts for development of automated procedures for local residual stress analysis of (i) thin films, (ii) microelectronics devices and (iii) polycrystalline and amorphous bulk materials. Practical applications of the method on several systems will be described and discussed. In particular, the issues of residual stress assessment on very thin films and micro-devices, stress depth profiling, stress measurement on amorphous materials and the effects of ion induced damage and elastic anisotropy on the relaxation strains will be reviewed
    • 

    corecore