146 research outputs found
Impact of body position on imaging ballistocardiographic signals
Current works direct at the unobtrusive acquisition of vital parameters from videos. The most common approach exploits subtle color variations. The analysis of cardiovascular induced motion from videos (imaging ballistocardiography, iBCG) is another approach that can supplement the analysis of color changes. The presented study systematically investigates the impact of body position (supine vs. upright) on iBCG. Our research directs at heart rate estimation by iBCG and on the possibility to analyse ballistocardiographic waveforms from iBCG. We use own data from 30 healthy volunteers, who went through repeated orthostatic maneuvers on a tilt table. Processing is done according to common procedures for iBCG processing including feature tracking, dimensionality reduction and bandpass filtering. Our results indicate that heart rate estimation works well in supine position (root mean square error of heart rate estimation 5.68 beats per minute). The performance drastically degrades in upri ght (standing) position (root mean square error of heart rate estimation 21.20 beats per minute). With respect to analysis of beat waveforms, we found large intra-subject and inter-subject variations. Only in few cases, the resulting waveform closely resembles the ideal ballistocardiographic waveform. Our investigation indicates that the actual position has a large effect on iBCG and should be considered in algorithmic developments and testing
Beat-to-beat blood pressure estimation by photoplethysmography and its interpretation
Blood pressure (BP) is among the most important vital signals. Estimation of absolute BP solely using photoplethysmography (PPG) has gained immense attention over the last years. Available works differ in terms of used features as well as classifiers and bear large differences in their results. This work aims to provide a machine learning method for absolute BP estimation, its interpretation using computational methods and its critical appraisal in face of the current literature. We used data from three different sources including 273 subjects and 259,986 single beats. We extracted multiple features from PPG signals and its derivatives. BP was estimated by xgboost regression. For interpretation we used Shapley additive values (SHAP). Absolute systolic BP estimation using a strict separation of subjects yielded a mean absolute error of 9.456mmHg and correlation of 0.730. The results markedly improve if data separation is changed (MAE: 6.366mmHg, r: 0.874). Interpretation by means of SHAP revealed four features from PPG, its derivation and its decomposition to be most relevant. The presented approach depicts a general way to interpret multivariate prediction algorithms and reveals certain features to be valuable for absolute BP estimation. Our work underlines the considerable impact of data selection and of training/testing separation, which must be considered in detail when algorithms are to be compared. In order to make our work traceable, we have made all methods available to the public
Photoplethysmography upon cold stress — impact of measurement site and acquisition mode
Photoplethysmography (PPG) allows various statements about the physiological state. It supports multiple recording setups, i.e., application to various body sites and different acquisition modes, rendering the technique a versatile tool for various situations. Owing to anatomical, physiological and metrological factors, PPG signals differ with the actual setup. Research on such differences can deepen the understanding of prevailing physiological mechanisms and path the way towards improved or novel methods for PPG analysis. The presented work systematically investigates the impact of the cold pressor test (CPT), i.e., a painful stimulus, on the morphology of PPG signals considering different recording setups. Our investigation compares contact PPG recorded at the finger, contact PPG recorded at the earlobe and imaging PPG (iPPG), i.e., non-contact PPG, recorded at the face. The study bases on own experimental data from 39 healthy volunteers. We derived for each recording setup four common morphological PPG features from three intervals around CPT. For the same intervals, we derived blood pressure and heart rate as reference. To assess differences between the intervals, we used repeated measures ANOVA together with paired t-tests for each feature and we calculated Hedges’ g to quantify effect sizes. Our analyses show a distinct impact of CPT. As expected, blood pressure shows a highly significant and persistent increase. Independently of the recording setup, all PPG features show significant changes upon CPT as well. However, there are marked differences between recording setups. Effect sizes generally differ with the finger PPG showing the strongest response. Moreover, one feature (pulse width at half amplitude) shows an inverse behavior in finger PPG and head PPG (earlobe PPG and iPPG). In addition, iPPG features behave partially different from contact PPG features as they tend to return to baseline values while contact PPG features remain altered. Our findings underline the importance of recording setup and physiological as well as metrological differences that relate to the setups. The actual setup must be considered in order to properly interpret features and use PPG. The existence of differences between recording setups and a deepened knowledge on such differences might open up novel diagnostic methods in the future
T Wave Amplitude Correction of QT Interval Variability for Improved Repolarization Lability Measurement
Objectives: The inverse relationship between QT interval variability (QTV) and T wave amplitude potentially confounds QT variability assessment. We quantified the influence of the T wave amplitude on QTV in a comprehensive dataset and devised a correction formula.
Methods: Three ECG datasets of healthy subjects were analyzed to model the relationship between T wave amplitude and QTV. To derive a generally valid correction formula, linear regression analysis was used. The proposed correction formula was applied to patients enrolled in the Evaluation of Defibrillator in Non-Ischemic Cardiomyopathy Treatment Evaluation trial (DEFINITE) to assess the prognostic significance of QTV for all-cause mortality in patients with non-ischemic dilated cardiomyopathy.
Results: A strong inverse relationship between T wave amplitude and QTV was demonstrated, both in healthy subjects (R2 = 0.68, p < 0.001) and DEFINITE patients (R2 = 0.20, p < 0.001). Applying the T wave amplitude correction to QTV achieved 2.5-times better group discrimination between patients enrolled in the DEFINITE study and healthy subjects. Kaplan-Meier estimator analysis showed that T wave amplitude corrected QTVi is inversely related to survival (p < 0.01) and a significant predictor of all-cause mortality.
Conclusion: We have proposed a simple correction formula for improved QTV assessment. Using this correction, predictive value of QTV for all-cause mortality in patients with non-ischemic cardiomyopathy has been demonstrated
Cardiovascular assessment by imaging photoplethysmography – a review
AbstractOver the last few years, the contactless acquisition of cardiovascular parameters using cameras has gained immense attention. The technique provides an optical means to acquire cardiovascular information in a very convenient way. This review provides an overview on the technique’s background and current realizations. Besides giving detailed information on the most widespread application of the technique, namely the contactless acquisition of heart rate, we outline further concepts and we critically discuss the current state.</jats:p
Heart rate from face videos under realistic conditions for advanced driver monitoring
Abstract
The role of physiological signals has a large impact on driver monitoring systems, since it tells something about the human state. This work addresses the recursive probabilistic inference problem in time-varying linear dynamic systems to incorporate invariance into the task of heart rate estimation from face videos under realistic conditions. The invariance encapsulates motion as well as varying illumination conditions in order to accurately estimate vitality parameters from human faces using conventional camera technology. The solution is based on the canonical state space representation of an Itô process and a Wiener velocity model. Empirical results yield to excellent real-time and estimation performance of heart rates in presence of disturbing factors, like rigid head motion, talking, facial expressions and natural illumination conditions making the process of human state estimation from face videos applicable in a much broader sense, pushing the technology towards advanced driver monitoring systems.</jats:p
- …