43 research outputs found

    Electric field and strain induced Rashba effect in hybrid halide perovskites

    Full text link
    Using first principles density functional theory calculations, we show how Rashba-type energy band splitting in the hybrid organic-inorganic halide perovskites APbX3_3 (A=CH3_3NH3+_3^+, CH(NH2_2)2+_2^+, Cs+^+ and X=I, Br) can be tuned and enhanced with electric fields and anisotropic strain. In particular, we demonstrate that the magnitude of the Rashba splitting of tetragonal (CH3_3NH3_3)PbI3_3 grows with increasing macroscopic alignment of the organic cations and electric polarization, indicating appreciable tunability with experimentally-feasible applied fields, even at room temperature. Further, we quantify the degree to which this effect can be tuned via chemical substitution at the A and X sites, which alters amplitudes of different polar distortion patterns of the inorganic PbX3_3 cage that directly impact Rashba splitting. In addition, we predict that polar phases of CsPbI3_3 and (CH3_3NH3_3)PbI3_3 with R3cR3c symmetry possessing considerable Rashba splitting might be accessible at room temperature via anisotropic strain induced by epitaxy, even in the absence of electric fields

    Effects of quantum confinement on excited state properties of SrTiO3_3 from ab initio many-body perturbation theory

    Full text link
    The Ruddlesden-Popper (RP) homologous series Srn+1_{n+1}Tin_{n}O3n+1_{3n+1} provides a useful template for the study and control of the effects of dimensionality and quantum confinement on the excited state properties of the complex oxide SrTiO3_3. We use ab initio many-body perturbation theory within the GWGW approximation and the Bethe-Salpeter equation approach to calculate quasiparticle energies and absorption spectrum of Srn+1_{n+1}Tin_{n}O3n+1_{3n+1} for n=15n=1-5 and \infty. Our computed direct and indirect optical gaps are in excellent agreement with spectroscopic measurements. The calculated optical spectra reproduce the main experimental features and reveal excitonic structure near the gap edge. We find that electron-hole interactions are important across the series, leading to significant exciton binding energies that increase for small nn and reach a value of 330~meV for n=1n=1, a trend attributed to increased quantum confinement. We find that the lowest-energy singlet exciton of Sr2_2TiO4_4 (n=1n=1) localizes in the 2D plane defined by the TiO2_2 layer, and explain the origin of its localization

    Critical Role of Methylammonium Librational Motion in Methylammonium Lead Iodide (CH3NH3PbI3) Perovskite Photochemistry.

    Get PDF
    Raman and photoluminescence (PL) spectroscopy are used to investigate dynamic structure-function relationships in methylammonium lead iodide (MAPbI3) perovskite. The intensity of the 150 cm-1 methylammonium (MA) librational Raman mode is found to be correlated with PL intensities in microstructures of MAPbI3. Because of the strong hydrogen bond between hydrogens in MA and iodine in the PbI6 perovskite octahedra, the Raman activity of MA is very sensitive to structural distortions of the inorganic framework. The structural distortions directly influence PL intensities, which in turn have been correlated with microstructure quality. Our measurements, supported with first-principles calculations, indicate how excited-state MA librational displacements mechanistically control PL efficiency and lifetime in MAPbI3-material parameters that are likely important for efficient photovoltaic devices

    Emergence of Rashba-/Dresselhaus Effects in Ruddlesden-Popper Halide Perovskites with Octahedral Rotations

    Full text link
    Ruddelsden-Popper halide perovskites are highly versatile quasi-two-dimensional energy materials with a wide range of tunable optoelectronic properties. Here we use the all-inorganic Csn+1_{n+1}Pbn_nX3n+1_{3n+1} Ruddelsden-Popper perovskites with X=I, Br, and Cl to systematically model the effect of octahedral tilting distortions on the energy landscape, band gaps, macroscopic polarization, and the emergence of Rashba-/Dresselhaus splitting in these materials. We construct all unique n=1n=1 and n=2n=2 structures following from octahedral tilts and use first-principles density functional theory to calculate total energies, polarizations and band structures, backed up by band gap calculations using the GWGW approach. Our results provide design rules for tailoring structural distortions and band-structure properties in all-inorganic Ruddelsden-Popper perovskites through the interplay of the amplitude, direction, and chemical character of the antiferrodistortive distortion modes contributing to each octahedral tilt pattern. Our work emphasizes that, in contrast to 3D perovskites, polar structures may arise from a combination of octahedral tilts, and Rashba-/Dresselhaus splitting in this class of materials is determined by the direction and Pb-I orbital contribution of the polar distortion mode

    Antiferroelectric negative capacitance from a structural phase transition in zirconia

    Full text link
    Crystalline materials with broken inversion symmetry can exhibit a spontaneous electric polarization, which originates from a microscopic electric dipole moment. Long-range polar or anti-polar order of such permanent dipoles gives rise to ferroelectricity or antiferroelectricity, respectively. However, the recently discovered antiferroelectrics of fluorite structure (HfO2_2 and ZrO2_2) are different: A non-polar phase transforms into a polar phase by spontaneous inversion symmetry breaking upon the application of an electric field. Here, we show that this structural transition in antiferroelectric ZrO2_2 gives rise to a negative capacitance, which is promising for overcoming the fundamental limits of energy efficiency in electronics. Our findings provide insight into the thermodynamically 'forbidden' region of the antiferroelectric transition in ZrO2_2 and extend the concept of negative capacitance beyond ferroelectricity. This shows that negative capacitance is a more general phenomenon than previously thought and can be expected in a much broader range of materials exhibiting structural phase transitions
    corecore