7 research outputs found

    The NOX toolbox: validating the role of NADPH oxidases in physiology and disease

    Get PDF
    Reactive oxygen species (ROS) are cellular signals but also disease triggers; their relative excess (oxidative stress) or shortage (reductive stress) compared to reducing equivalents are potentially deleterious. This may explain why antioxidants fail to combat diseases that correlate with oxidative stress. Instead, targeting of disease-relevant enzymatic ROS sources that leaves physiological ROS signaling unaffected may be more beneficial. NADPH oxidases are the only known enzyme family with the sole function to produce ROS. Of the catalytic NADPH oxidase subunits (NOX), NOX4 is the most widely distributed isoform. We provide here a critical review of the currently available experimental tools to assess the role of NOX and especially NOX4, i.e. knock-out mice, siRNAs, antibodies, and pharmacological inhibitors. We then focus on the characterization of the small molecule NADPH oxidase inhibitor, VAS2870, in vitro and in vivo, its specificity, selectivity, and possible mechanism of action. Finally, we discuss the validation of NOX4 as a potential therapeutic target for indications including stroke, heart failure, and fibrosis

    Der enzymatische und anti-oxidative Mechanismus des anti-atherogenen Enzyms Paraoxonase-2

    No full text
    Das humane Enzym PON2 ist in eine Vielzahl pathophysiologischer Prozesse involviert und ist durch zwei Funktionen gekennzeichnet - eine enzymatische Laktonase-Aktivität und eine anti-oxidative Aktivität. Durch die Laktonase-Aktivität hydrolysiert PON2 vorwiegend das bakterielle Signalmolekül 3oxoC12. PON2 ist als Bestandteil des angeborenen Immunsystems anzusehen und trägt wahrscheinlich zur Immunabwehr gegen Infektionen mit den human-pathogenen Pseudomonas aeruginosa Bakterien bei. Durch die anti-oxidative Aktivität vermindert PON2 oxidative Schäden und verringert redox-abhängige pro-apoptotische Stimulation. Diese einzigartige Funktion von PON2 ist jedoch ambivalent zu betrachten, da hohe PON2-Spiegel zwar Arteriosklerose reduzieren können, aber im Verdacht stehen Tumorzellen zu stabilisieren.rnIn dieser Arbeit wurden die noch unbekannten Mechanismen und der Zusammenhang der enzymatischen und der anti-oxidativen Aktivität analysiert. In diesem Rahmen wurde gezeigt, dass PON2 spezifisch die Superoxidfreisetzung an Komplex I und III der Atmungskette in der inneren Mitochondrienmembran reduzieren kann. PON2 veränderte dabei weder die Aktivitäten der Superoxiddismutasen noch die Cytochrom C-Expression. Weiterhin konnte in dieser Arbeit erstmals gezeigt werden, dass PON2 O2- nicht direkt abbaut, sondern vielmehr dessen Bildung verhindert. Diese Erkenntnisse implizieren, dass PON2 die anti-oxidative Aktivität über eine Beeinflussung des Quinon-Pools vermittelt. Anhand von verschiedenen Punktmutationen konnte gezeigt werden, dass die Histidinreste-114 und -133 für die Laktonase-Aktivität essentiell sind. Weiterhin wurden die Glykosylierungsstellen von PON2 identifiziert und gezeigt, dass die Glykosylierung, nicht aber der natürliche Polymorphismus Ser/Cys311 für die Laktonase-Aktivität von Bedeutung ist. Von besonderer Bedeutung ist, dass keine dieser Mutationen die anti-oxidative Aktivität beeinflusste, wodurch erstmals die Unabhängigkeit der beiden Funktionen von PON2 gezeigt werden konnte. rnEs war bekannt, dass PON2 gegen intrinsische und ER-Stress-induzierte Apoptose schützt. Die Spezifität der anti-oxidativen / anti-apoptotischen Wirkung wurde hier an einem weiteren pathophysiologischen Modell untersucht. 7- Ketocholesterol (7-KC) ist der Hauptbestandteil des pro-arteriosklerotischen oxLDL und verursacht in Zellen des Gefäßsystems ER-Stress, oxidativen Stress und Apoptose. Unerwarteterweise konnte PON2 Endothelzellen nicht gegen den 7-KC-induzierten Zelltod schützen. Mehrere unabhängige experimentelle Ansätze belegen, dass 7-KC in Endothelzellen im Gegensatz zu Gefäßmuskelzellen den Zelltod über Autophagie und nicht über ER-Stress oder intrinsische Apoptose bewirkt. Weiterhin führt 7-KC, wie auch 3oxoC12 und Thapsigargin zu einem Abbau der PON2-mRNA, die über die 5’UTR der PON2-mRNA vermittelt wird. Diese Arbeit vermittelt detaillierte mechanistische Einsichten in die Funktionen von PON2, die für ihre Rolle bei Arteriosklerose, in der körpereigenen Immunabwehr und bei Krebs entscheidend sind.rnThe human enzyme paraoxonase-2 (PON2) has two important functions, an enzymatic lactonase activity and the reduction of intracellular oxidative stress. By its enzymatic function, it dominantly inactivates bacterial lactone signalling molecule 3oxoC12, thus PON2, as factor of the innate immunity, represents an important defence mechanism against infections by the human pathogen Pseudomonas aeruginosa. By its anti-oxidative effect, PON2 protects cells from oxidative damage and confers resistance to cytotoxic stimuli, as it diminishes redox-mediated mitochondrial cell death signalling. However, this protective anti-apoptotic effect of PON2 may be both appreciated and deleterious: high PON2 levels seem to protect against atherosclerosis, but it may also favour tumour development due to increased apoptotic escape. This study addressed the yet unknown mechanisms and relatedness of PON2 enzymatic and anti-oxidative function.rnHere I show that PON2 specifically reduced superoxide production at complex-I or complex-III of the electron transport chain in the inner mitochondrial membrane. Thereby PON2 didn’t change expression levels of cytochrome c or activities of superoxide dismutases. Further this study showed for the first time that PON2 can‘t scavenge O2- but diminishes its generation most likely by interacting with the quinone pool. Specific mutations of several amino acids showed that His114 and His133 are essential for the lactonase activity of PON2. Glycosylation sites of PON2 were also identified and proved to be essential for its lactonase activity in contrast to its native polymorphism Ser/Cys311. Importantly, none of these mutations altered PON2 anti-oxidative / anti-apoptotic function, demonstrating unrelated functions of the same protein. rnThe capability of PON2 to protect cells against intrinsic or ER stress mediated apoptosis is well established. The specificity of its anti-oxidative / anti-apoptotic effects was tested in another pathophysiological model. 7- ketocholesterol (7-KC) is the main constituent of pro-atherogenic oxLDL and causes ER stress, oxidative stress and apoptosis in smooth muscle cells of the vascular wall. This was tested for endothelial cells. Several lines of evidence demonstrate that 7-KC induced ER stress and autophagy in endothelial cells, which may ultimately result in cell death. Importantly, this type of cell death showed no signs of apoptosis and was not diminished by enhanced PON2 expression, in accordance with its anti-apoptotic function. To further elucidate mechanisms leading to lacking effect of PON2, I addressed expression levels and found that 7-KC, like thapsigargin and the lactone 3oxoC12, lead to PON2 mRNA degradation. The responsive element located to its 5’UTR.rnCollectively, this study provides detailed mechanistic insight into the functions of PON2 and discriminates its effect on different pathways, which is important for its role in innate host defence, atherosclerosis and cancer.r

    The 1027th target candidate in stroke: Will NADPH oxidase hold up?

    Get PDF
    As recently reviewed, 1026 neuroprotective drug candidates in stroke research have all failed on their road towards validation and clinical translation, reasons being quality issues in preclinical research and publication bias. Quality control guidelines for preclinical stroke studies have now been established. However, sufficient understanding of the underlying mechanisms of neuronal death after stroke that could be possibly translated into new therapies is lacking. One exception is the hypothesis that cellular death is mediated by oxidative stress. Oxidative stress is defined as an excess of reactive oxygen species (ROS) derived from different possible enzymatic sources. Among these, NADPH oxidases (NOX1-5) stand out as they represent the only known enzyme family that has no other function than to produce ROS. Based on data from different NOX knockout mouse models in ischemic stroke, the most relevant isoform appears to be NOX4. Here we discuss the state-of-the-art of this target with respect to stroke and open questions that need to be addressed on the path towards clinical translation

    One Enzyme, Two Functions: PON2 PREVENTS MITOCHONDRIAL SUPEROXIDE FORMATION AND APOPTOSIS INDEPENDENT FROM ITS LACTONASE ACTIVITY*

    No full text
    The human enzyme paraoxonase-2 (PON2) has two functions, an enzymatic lactonase activity and the reduction of intracellular oxidative stress. As a lactonase, it dominantly hydrolyzes bacterial signaling molecule 3OC12 and may contribute to the defense against pathogenic Pseudomonas aeruginosa. By its anti-oxidative effect, PON2 reduces cellular oxidative damage and influences redox signaling, which promotes cell survival. This may be appreciated but also deleterious given that high PON2 levels reduce atherosclerosis but may stabilize tumor cells. Here we addressed the unknown mechanisms and linkage of PON2 enzymatic and anti-oxidative function. We demonstrate that PON2 indirectly but specifically reduced superoxide release from the inner mitochondrial membrane, irrespective whether resulting from complex I or complex III of the electron transport chain. PON2 left O2˙̄ dismutase activities and cytochrome c expression unaltered, and it did not oxidize O2˙̄ but rather prevented its formation, which implies that PON2 acts by modulating quinones. To analyze linkage to hydrolytic activity, we introduced several point mutations and show that residues His114 and His133 are essential for PON2 activity. Further, we mapped its glycosylation sites and provide evidence that glycosylation, but not a native polymorphism Ser/Cys311, was critical to its activity. Importantly, none of these mutations altered the anti-oxidative/anti-apoptotic function of PON2, demonstrating unrelated activities of the same protein. Collectively, our study provides detailed mechanistic insight into the functions of PON2, which is important for its role in innate immunity, atherosclerosis, and cancer
    corecore