11,048 research outputs found

    On the Ernst electro-vacuum equations and ergosurfaces

    Get PDF
    The question of smoothness at the ergosurface of the space-time metric constructed out of solutions (E,phi) of the Ernst electro-vacuum equations is considered. We prove smoothness of those ergosurfaces at which Re(E) provides the dominant contribution to f=-(Re(E)+|phi|^2) at the zero-level-set of f. Some partial results are obtained in the remaining cases: in particular we give examples of leading-order solutions with singular isolated "ergocircles".Comment: 15 pages, no figures, minor change

    Towards a classification of vacuum near-horizons geometries

    Full text link
    We prove uniqueness of the near-horizon geometries arising from degenerate Kerr black holes within the collection of nearby vacuum near-horizon geometries.Comment: 16 pages, 3 figures; minor changes to match published versio

    Space-time diagrammatics

    Full text link
    We introduce a new class of two-dimensional diagrams, the \emph{projection diagrams}, as a tool to visualize the global structure of space-times. We construct the diagrams for several metrics of interest, including the Kerr-Newman - (anti) de Sitter family, with or without cosmological constant, and the Emparan-Reall black rings.Comment: 41 pages, minor changes and correction

    Two Dimensional Ir-Cluster Lattices on Moir\'e of Graphene with Ir(111)

    Full text link
    Lattices of Ir clusters have been grown by vapor phase deposition on graphene moir\'{e}s on Ir(111). The clusters are highly ordered, spatially and thermally stable below 500K. Their narrow size distribution is tunable from 4 to about 130 atoms. A model for cluster binding to the graphene is presented based on scanning tunneling microscopy and density functional theory. The proposed binding mechanism suggests that similar cluster lattices might be grown of materials other than Ir.Comment: Submitted to PRL on 27Apr0

    A user's guide for V174, a program using a finite difference method to analyze transonic flow over oscillating wings

    Get PDF
    The design and usage of a pilot program using a finite difference method for calculating the pressure distributions over harmonically oscillating wings in transonic flow are discussed. The procedure used is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The steady velocity potential which must be obtained from some other program, is required for input. The unsteady differential equation is linear, complex in form with spatially varying coefficients. Because sinusoidal motion is assumed, time is not a variable. The numerical solution is obtained through a finite difference formulation and a line relaxation solution method

    Sadder but fitter. The evolutionary function of depressive symptoms following fetal loss

    Get PDF
    A literature review about an evolutionary model of fetal loss depression is presented. This model conceptualizes depression following miscarriage or stillbirth as an evolutionary protective mechanism to avoid further fetal loss. It postulates that depressive symptoms delay the next reproduction and save maternal resources. These symptoms along with hypochondric symptoms of depression which lead to a search for causes and reappraisal of environmental factors, are probably adaptations to causes of further fetal loss (e.g. epidemics, famines, infections, environmental toxins)

    Induction Mapping of the 3D-Modulated Spin Texture of Skyrmions in Thin Helimagnets

    Full text link
    Envisaged applications of skyrmions in magnetic memory and logic devices crucially depend on the stability and mobility of these topologically non-trivial magnetic textures in thin films. We present for the first time quantitative maps of the magnetic induction that provide evidence for a 3D modulation of the skyrmionic spin texture. The projected in-plane magnetic induction maps as determined from in-line and off-axis electron holography carry the clear signature of Bloch skyrmions. However, the magnitude of this induction is much smaller than the values expected for homogeneous Bloch skyrmions that extend throughout the thickness of the film. This finding can only be understood, if the underlying spin textures are modulated along the out-of-plane z direction. The projection of (the in-plane magnetic induction of) helices is further found to exhibit thickness-dependent lateral shifts, which show that this z modulation is accompanied by an (in-plane) modulation along the x and y directions

    Analytic Continuation of Quantum Monte Carlo Data by Stochastic Analytical Inference

    Full text link
    We present an algorithm for the analytic continuation of imaginary-time quantum Monte Carlo data which is strictly based on principles of Bayesian statistical inference. Within this framework we are able to obtain an explicit expression for the calculation of a weighted average over possible energy spectra, which can be evaluated by standard Monte Carlo simulations, yielding as by-product also the distribution function as function of the regularization parameter. Our algorithm thus avoids the usual ad-hoc assumptions introduced in similar algortihms to fix the regularization parameter. We apply the algorithm to imaginary-time quantum Monte Carlo data and compare the resulting energy spectra with those from a standard maximum entropy calculation
    • …
    corecore