47,940 research outputs found

    On Elo based prediction models for the FIFA Worldcup 2018

    Full text link
    We propose an approach for the analysis and prediction of a football championship. It is based on Poisson regression models that include the Elo points of the teams as covariates and incorporates differences of team-specific effects. These models for the prediction of the FIFA World Cup 2018 are fitted on all football games on neutral ground of the participating teams since 2010. Based on the model estimates for single matches Monte-Carlo simulations are used to estimate probabilities for reaching the different stages in the FIFA World Cup 2018 for all teams. We propose two score functions for ordinal random variables that serve together with the rank probability score for the validation of our models with the results of the FIFA World Cups 2010 and 2014. All models favor Germany as the new FIFA World Champion. All possible courses of the tournament and their probabilities are visualized using a single Sankey diagram.Comment: 22 pages, 7 figure

    Subgraphs and Colourability of Locatable Graphs

    Full text link
    We study a game of pursuit and evasion introduced by Seager in 2012, in which a cop searches the robber from outside the graph, using distance queries. A graph on which the cop wins is called locatable. In her original paper, Seager asked whether there exists a characterisation of the graph property of locatable graphs by either forbidden or forbidden induced subgraphs, both of which we answer in the negative. We then proceed to show that such a characterisation does exist for graphs of diameter at most 2, stating it explicitly, and note that this is not true for higher diameter. Exploring a different direction of topic, we also start research in the direction of colourability of locatable graphs, we also show that every locatable graph is 4-colourable, but not necessarily 3-colourable.Comment: 25 page

    The Galactic Faraday depth sky revisited

    Full text link
    The Galactic Faraday depth sky is a tracer for both the Galactic magnetic field and the thermal electron distribution. It has been previously reconstructed from polarimetric measurements of extra-galactic point sources. Here, we improve on these works by using an updated inference algorithm as well as by taking into account the free-free emission measure map from the Planck survey. In the future, the data situation will improve drastically with the next generation Faraday rotation measurements from SKA and its pathfinders. Anticipating this, the aim of this paper is to update the map reconstruction method with the latest development in imaging based on information field theory. We demonstrate the validity of the new algorithm by applying it to the Oppermann et al. (2012) data compilation and compare our results to the previous map.\\ Despite using exactly the previous data set, a number of novel findings are made: A non-parametric reconstruction of an overall amplitude field resembles the free-free emission measure map of the Galaxy. Folding this free-free map into the analysis allows for more detailed predictions. The joint inference enables us to identify regions with deviations from the assumed correlations between the free-free and Faraday data, thereby pointing us to Galactic structures with distinguishably different physics. We e.g. find evidence for an alignment of the magnetic field within the line of sights along both directions of the Orion arm.Comment: 16 pages, 15 figure
    corecore