19 research outputs found

    Single Nucleotide Polymorphism in Gene Encoding Transcription Factor Prep1 Is Associated with HIV-1-Associated Dementia

    Get PDF
    BACKGROUND: Infection with HIV-1 may result in severe cognitive and motor impairment, referred to as HIV-1-associated dementia (HAD). While its prevalence has dropped significantly in the era of combination antiretroviral therapy, milder neurocognitive disorders persist with a high prevalence. To identify additional therapeutic targets for treating HIV-associated neurocognitive disorders, several candidate gene polymorphisms have been evaluated, but few have been replicated across multiple studies. METHODS: We here tested 7 candidate gene polymorphisms for association with HAD in a case-control study consisting of 86 HAD cases and 246 non-HAD AIDS patients as controls. Since infected monocytes and macrophages are thought to play an important role in the infection of the brain, 5 recently identified single nucleotide polymorphisms (SNPs) affecting HIV-1 replication in macrophages in vitro were also tested. RESULTS: The CCR5 wt/Δ32 genotype was only associated with HAD in individuals who developed AIDS prior to 1991, in agreement with the observed fading effect of this genotype on viral load set point. A significant difference in genotype distribution among all cases and controls irrespective of year of AIDS diagnosis was found only for a SNP in candidate gene PREP1 (p = 1.2 × 10(-5)). Prep1 has recently been identified as a transcription factor preferentially binding the -2,518 G allele in the promoter of the gene encoding MCP-1, a protein with a well established role in the etiology of HAD. CONCLUSION: These results support previous findings suggesting an important role for MCP-1 in the onset of HIV-1-associated neurocognitive disorders

    Genome-Wide Association Study Identifies Single Nucleotide Polymorphism in DYRK1A Associated with Replication of HIV-1 in Monocyte-Derived Macrophages

    Get PDF
    Background: HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART), macrophages keep producing virus because tissue penetration of antiretrovirals is suboptimal and the efficacy of some is reduced. Thus, to cure HIV-1 infection with antiretrovirals we will also need to efficiently inhibit viral replication in macrophages. The majority of the current drugs block the action of viral enzymes, whereas there is an abundance of yet unidentified host factors that could be targeted. We here present results from a genome-wide association study identifying novel genetic polymorphisms that affect in vitro HIV-1 replication in macrophages. Methodology/Principal Findings: Monocyte-derived macrophages from 393 blood donors were infected with HIV-1 and viral replication was determined using Gag p24 antigen levels. Genomic DNA from individuals with macrophages that had relatively low (n = 96) or high (n = 96) p24 production was used for SNP genotyping with the Illumina 610 Quad beadchip. A total of 494,656 SNPs that passed quality control were tested for association with HIV-1 replication in macrophages, using linear regression. We found a strong association between in vitro HIV-1 replication in monocyte-derived macrophages and SNP rs12483205 in DYRK1A (p = 2.16×10-5). While the association was not genome-wide significant (p<1×10-7), we could replicate this association using monocyte-derived macrophages from an independent group of 31 individuals (p = 0.0034). Combined analysis of the initial and replication cohort increased the strength of the association (p = 4.84×10-6). In addition, we found this SNP to be associated with HIV-1 disease progression in vivo in two independent cohort studies (p = 0.035 and p = 0.0048). Conclusions/Significance: These findings suggest that the kinase DYRK1A is involved in the replication of HIV-1, in vitro in macrophages as well as in vivo. © 2011 Bol et al

    Coordinate Replication of Alfalfa Mosaic Virus RNAs 1 and 2 Involves cis- and trans-Acting Functions of the Encoded Helicase-Like and Polymerase-Like Domains

    No full text
    RNAs 1 and 2 of the tripartite genome of alfalfa mosaic virus encode the replicase proteins P1 and P2, respectively, whereas RNA 3 encodes the movement protein and coat protein. Transient expression of wild-type (wt) and mutant viral RNAs and proteins by agroinfiltration of plant leaves was used to study cis- and trans-acting functions of the helicase-like domain in P1 and the polymerase-like domain in P2. Three mutations in conserved motifs of the helicase-like domain of P1 affected one or more steps leading to synthesis of minus-strand RNAs 1, 2, and 3. In leaves containing transiently expressed P1 and P2, replication of wt but not mutant RNA 1 was observed. Apparently, the transiently expressed P1 could not complement the defect in replication of the RNA 1 mutant. Moreover, the transiently expressed wt replicase supported replication of RNA 2, but this replication was blocked in trans by coexpression of mutant RNA 1. However, expression of mutant RNA 1 did not interfere with the replication of RNA 3 by the wt replicase. Similarly, a mutation in the GDD motif encoded by RNA 2 could not be complemented in trans and affected the replication of RNA 1 by a wt replicase, while replication of RNA 3 remained unaffected. In competition assays, the transient wt replicase preferentially replicated RNA 3 over RNAs 1 and 2. The results indicate that one or more functions of P1 and P2 act in cis and point to the existence of a mechanism that coordinates the replication of RNAs 1 and 2

    Donor variation in in vitro HIV-1 susceptibility of monocyte-derived macrophages

    No full text
    Primary human cells from different donors vary in their susceptibility to in vitro infection with HIV-1. In order to perform genetic analysis to identify host factors that affect HIV-1 susceptibility, it is important that a clear phenotype is defined. Here, we report a standardized method to Study variation for in vitro HIV-1 infection in monocyte-derived macrophages (MDM) from large numbers of individuals. With this assay, HIV-1 susceptibility of MDM from 489 different donors shows more than 3 log variation and a good correlation with the 32 base pair deletion in the CCR5 co-receptor (ccr5 Delta 32 genotype) of the donors. However, in 7 of 12 donors completely resistant to infection with CCR5-using HIV-1, this was not explained by the ccr5 Delta 32 genotype, showing evidence that other host factors are likely to influence HIV-1 replication in MDM. Infections with VSV-G pseudotyped HIV-1 indeed confirmed the existence of post-entry level restrictions in MDM. (C) 2009 Elsevier Inc. All rights reserve

    B Cell Receptor Repertoire Analysis in Malaria-Naive and Malaria-Experienced Individuals Reveals Unique Characteristics of Atypical Memory B Cells.

    No full text
    Malaria, caused by parasites of the Plasmodium genus, is responsible for significant morbidity and mortality globally. Chronic Plasmodium falciparum exposure affects the B cell compartment, leading to the accumulation of atypical memory B cells (atMBCs). IgM-positive (IgM+) and IgG+ atMBCs have not been compared in-depth in the context of malaria, nor is it known if atMBCs in malaria-experienced individuals are different from phenotypically similar B cells in individuals with no known history of Plasmodium exposure. To address these questions, we characterized the B cell receptor (BCR) repertoire of naive B cells (NBCs), IgM+ and IgG+ classical MBCs (cMBCs), and IgM+ and IgG+ atMBCs from 13 malaria-naive American adults and 7 malaria-experienced Ugandan adults. Our results demonstrate that P. falciparum exposure mainly drives changes in atMBCs. In comparison to malaria-naive adults, the BCR repertoire of Plasmodium-exposed adults showed increased levels of somatic hypermutation in the heavy chain V region in IgM+ and IgG+ atMBCs, shorter heavy chain complementarity-determining region 3 (HCDR3) in IgG+ atMBCs, and increased usage of IGHV3-73 in IgG+ cMBCs and both IgM+ and IgG+ atMBCs. Irrespective of Plasmodium exposure, IgM+ atMBCs closely resembled NBCs, while IgG+ atMBCs resembled IgG+ cMBCs. Physicochemical properties of the HCDR3 seemed to be intrinsic to cell type and independent of malaria experience. The resemblance between atMBCs from Plasmodium-exposed and naive adults suggests similar differentiation pathways regardless of chronic antigen exposure. Moreover, these data demonstrate that IgM+ and IgG+ atMBCs are distinct populations that should be considered separately in future analyses. IMPORTANCE Malaria, caused by Plasmodium parasites, still contributes to a high global burden of disease, mainly in children under 5 years of age. Chronic and recurrent Plasmodium infections affect the development of B cell memory against the parasite and promote the accumulation of atypical memory B cells (atMBCs), which have an unclear function in the immune response. Understanding where these cells originate from and whether they are beneficial in the immune response to Plasmodium will help inform vaccination development efforts. We found differences in B cell receptor (BCR) properties of atMBCs between malaria-naive and malaria-experienced adults that are suggestive of divergent selection processes, resulting in more somatic hypermutation and differential immunoglobulin heavy chain V (IGHV) gene usage. Despite these differences, atMBCs from malaria-naive and malaria-experienced adults also showed many similarities in BCR characteristics, such as physicochemical properties of the HCDR3 region, suggesting that atMBCs undergo similar differentiation pathways in response to different pathogens. Our study provides new insights into the effects of malaria experience on the B cell compartment and the relationships between atMBCs and other B cell populations

    Polymorphism in HIV-1 dependency factor PDE8A affects mRNA level and HIV-1 replication in primary macrophages

    Get PDF
    AbstractFour genome-wide RNAi screens have recently identified hundreds of HIV-1 dependency factors (HDFs). Previously, we reported a large variation in the ability of HIV-1 to replicate in monocyte-derived macrophages (MDM) derived from >400 healthy seronegative blood donors. Here we determined whether SNPs in genes encoding newly identified HDFs were associated with this variation in HIV-1 replication. We found a significant association between the minor allele of SNP rs2304418 in phosphodiesterase 8A (PDE8A) and lower HIV-1 replication (p=2.4×10−6). The minor allele of SNP rs2304418 was also significantly associated with lower PDE8A mRNA levels in MDM (p=8.3×10−5). In accordance with this, overexpression of PDE8A in HEK293T cells resulted in increased HIV-1 replication, while subsequent knock-down of PDE8A decreased replication. This study links host genetic variation in a newly identified HDF to variation in HIV-1 replication in a relevant primary target cell for HIV-1 and may provide new leads for treatment of this infection

    Genome-wide association scan in HIV-1-infected individuals identifying variants influencing disease course.

    Get PDF
    BACKGROUND: AIDS develops typically after 7-11 years of untreated HIV-1 infection, with extremes of very rapid disease progression (<2 years) and long-term non-progression (>15 years). To reveal additional host genetic factors that may impact on the clinical course of HIV-1 infection, we designed a genome-wide association study (GWAS) in 404 participants of the Amsterdam Cohort Studies on HIV-1 infection and AIDS. METHODS: The association of SNP genotypes with the clinical course of HIV-1 infection was tested in Cox regression survival analyses using AIDS-diagnosis and AIDS-related death as endpoints. RESULTS: Multiple, not previously identified SNPs, were identified to be strongly associated with disease progression after HIV-1 infection, albeit not genome-wide significant. However, three independent SNPs in the top ten associations between SNP genotypes and time between seroconversion and AIDS-diagnosis, and one from the top ten associations between SNP genotypes and time between seroconversion and AIDS-related death, had P-values smaller than 0.05 in the French Genomics of Resistance to Immunodeficiency Virus cohort on disease progression. CONCLUSIONS: Our study emphasizes that the use of different phenotypes in GWAS may be useful to unravel the full spectrum of host genetic factors that may be associated with the clinical course of HIV-1 infection
    corecore