4,703 research outputs found
Exploration vs Exploitation vs Safety: Risk-averse Multi-Armed Bandits
Motivated by applications in energy management, this paper presents the
Multi-Armed Risk-Aware Bandit (MARAB) algorithm. With the goal of limiting the
exploration of risky arms, MARAB takes as arm quality its conditional value at
risk. When the user-supplied risk level goes to 0, the arm quality tends toward
the essential infimum of the arm distribution density, and MARAB tends toward
the MIN multi-armed bandit algorithm, aimed at the arm with maximal minimal
value. As a first contribution, this paper presents a theoretical analysis of
the MIN algorithm under mild assumptions, establishing its robustness
comparatively to UCB. The analysis is supported by extensive experimental
validation of MIN and MARAB compared to UCB and state-of-art risk-aware MAB
algorithms on artificial and real-world problems.Comment: 16 page
Self-Adaptive Surrogate-Assisted Covariance Matrix Adaptation Evolution Strategy
This paper presents a novel mechanism to adapt surrogate-assisted
population-based algorithms. This mechanism is applied to ACM-ES, a recently
proposed surrogate-assisted variant of CMA-ES. The resulting algorithm,
saACM-ES, adjusts online the lifelength of the current surrogate model (the
number of CMA-ES generations before learning a new surrogate) and the surrogate
hyper-parameters. Both heuristics significantly improve the quality of the
surrogate model, yielding a significant speed-up of saACM-ES compared to the
ACM-ES and CMA-ES baselines. The empirical validation of saACM-ES on the
BBOB-2012 noiseless testbed demonstrates the efficiency and the scalability
w.r.t the problem dimension and the population size of the proposed approach,
that reaches new best results on some of the benchmark problems.Comment: Genetic and Evolutionary Computation Conference (GECCO 2012) (2012
Structural Agnostic Modeling: Adversarial Learning of Causal Graphs
A new causal discovery method, Structural Agnostic Modeling (SAM), is
presented in this paper. Leveraging both conditional independencies and
distributional asymmetries in the data, SAM aims at recovering full causal
models from continuous observational data along a multivariate non-parametric
setting. The approach is based on a game between players estimating each
variable distribution conditionally to the others as a neural net, and an
adversary aimed at discriminating the overall joint conditional distribution,
and that of the original data. An original learning criterion combining
distribution estimation, sparsity and acyclicity constraints is used to enforce
the end-to-end optimization of the graph structure and parameters through
stochastic gradient descent. Besides the theoretical analysis of the approach
in the large sample limit, SAM is extensively experimentally validated on
synthetic and real data
Black-box optimization benchmarking of IPOP-saACM-ES on the BBOB-2012 noisy testbed
In this paper, we study the performance of IPOP-saACM-ES, recently proposed
self-adaptive surrogate-assisted Covariance Matrix Adaptation Evolution
Strategy. The algorithm was tested using restarts till a total number of
function evaluations of was reached, where is the dimension of the
function search space. The experiments show that the surrogate model control
allows IPOP-saACM-ES to be as robust as the original IPOP-aCMA-ES and
outperforms the latter by a factor from 2 to 3 on 6 benchmark problems with
moderate noise. On 15 out of 30 benchmark problems in dimension 20,
IPOP-saACM-ES exceeds the records observed during BBOB-2009 and BBOB-2010.Comment: Genetic and Evolutionary Computation Conference (GECCO 2012) (2012
- …
