1,501 research outputs found

    Ising tricriticality and the dilute A3_3 model

    Full text link
    Some universal amplitude ratios appropriate to the ϕ2,1\phi_{2,1} peturbation of the c=7/10 minimal field theory, the subleading magnetic perturbation of the tricritical Ising model, are explicitly demonstrated in the dilute A3_3 model, in regime 1.Comment: 8 pages, LaTeX using iop macro

    Driving and damping mechanisms in hybrid pressure-gravity modes pulsators

    Full text link
    We study the energetic aspects of hybrid pressure-gravity modes pulsations. The case of hybrid beta Cephei-SPB pulsators is considered with special attention. In addition to the already known sensitivity of the driving mechanism to the heavy elements mixture (mainly the iron abundance), we show that the characteristics of the propagation and evanescent regions play also a major role, determining the extension of the stable gap in the frequency domain between the unstable low order pressure and high order gravity modes. Finally, we consider the case of hybrid delta Sct-gamma Dor pulsators.Comment: 7 pages, 9 figures, in the proceedings of the Helas II Conference: "Helioseismology, Asteroseismology and MHD Connections", Goettingen, August 200

    Large-scale Breit-Pauli R-matrix calculations for transition probabilities of Fe V

    Get PDF
    Ab initio theoretical calculations are reported for the electric (E1) dipole allowed and intercombination fine structure transitions in Fe V using the Breit-Pauli R-matrix (BPRM) method. We obtain 3865 bound fine structure levels of Fe V and 1.46x1061.46 x 10^6 oscillator strengths, Einstein A-coefficients and line strengths. In addition to the relativistic effects, the intermediate coupling calculations include extensive electron correlation effects that represent the complex configuration interaction (CI). Fe V bound levels are obtained with angular and spin symmetries SLπSL\pi and JπJ\pi of the (e + Fe VI) system such that 2S+12S+1 = 5,3,1, LL \leq 10, J8J \leq 8. The bound levels are obtained as solutions of the Breit-Pauli (e + ion) Hamiltonian for each JπJ\pi, and are designated according to the `collision' channel quantum numbers. A major task has been the identification of these large number of bound fine structure levels in terms of standard spectroscopic designations. A new scheme, based on the analysis of quantum defects and channel wavefunctions, has been developed. The identification scheme aims particularly to determine the completeness of the results in terms of all possible bound levels for applications to analysis of experimental measurements and plasma modeling. An uncertainty of 10-20% for most transitions is estimated.Comment: 31 pages, 1 figure, Physica Scripta (in press

    Electron-Ion Recombination Rate Coefficients and Photoionization Cross Sections for Astrophysically Abundant Elements VI. Ni II

    Get PDF
    We present the first detailed ab initio quantum mechanical calculations for total and state-specific recombination rate coefficients for e + Ni III --> Ni II. These rates are obtained using a unified treatment for total electron-ion recombination that treats the nonresonant radiative recombination and the resonant dielectronic recombination in a self-consistent unified manner in the close coupling approximation. Large-scale calculations are carried out using a 49-state wavefunction expansion from core configurations 3d^8, 3d^74s, and 3d^64p that permits the inclusion of prominent dipole allowed core transitions. These extensive calculations for the recombination rates of Ni II required hundreds of CPU hours on the Cray T90. The total recombination rate coefficients are provided for a wide range of temperature. The state-specific recombination rates for 532 bound states of doublet and quartet symmetries, and the corresponding photoionization cross sections for leaving the core in the ground state, are presented. Present total recombination rate coefficients differ considerably from the currently used data in astrophysical models.Comment: ApJ Suppl. (submitted), 4 figure

    Off-Critical Logarithmic Minimal Models

    Full text link
    We consider the integrable minimal models M(m,m;t){\cal M}(m,m';t), corresponding to the φ1,3\varphi_{1,3} perturbation off-criticality, in the {\it logarithmic limit\,} m,mm, m'\to\infty, m/mp/pm/m'\to p/p' where p,pp, p' are coprime and the limit is taken through coprime values of m,mm,m'. We view these off-critical minimal models M(m,m;t){\cal M}(m,m';t) as the continuum scaling limit of the Forrester-Baxter Restricted Solid-On-Solid (RSOS) models on the square lattice. Applying Corner Transfer Matrices to the Forrester-Baxter RSOS models in Regime III, we argue that taking first the thermodynamic limit and second the {\it logarithmic limit\,} yields off-critical logarithmic minimal models LM(p,p;t){\cal LM}(p,p';t) corresponding to the φ1,3\varphi_{1,3} perturbation of the critical logarithmic minimal models LM(p,p){\cal LM}(p,p'). Specifically, in accord with the Kyoto correspondence principle, we show that the logarithmic limit of the one-dimensional configurational sums yields finitized quasi-rational characters of the Kac representations of the critical logarithmic minimal models LM(p,p){\cal LM}(p,p'). We also calculate the logarithmic limit of certain off-critical observables Or,s{\cal O}_{r,s} related to One Point Functions and show that the associated critical exponents βr,s=(2α)Δr,sp,p\beta_{r,s}=(2-\alpha)\,\Delta_{r,s}^{p,p'} produce all conformal dimensions Δr,sp,p<(pp)(9pp)4pp\Delta_{r,s}^{p,p'}<{(p'-p)(9p-p')\over 4pp'} in the infinitely extended Kac table. The corresponding Kac labels (r,s)(r,s) satisfy (pspr)2<8p(pp)(p s-p' r)^2< 8p(p'-p). The exponent 2α=p2(pp)2-\alpha ={p'\over 2(p'-p)} is obtained from the logarithmic limit of the free energy giving the conformal dimension Δt=1α2α=2ppp=Δ1,3p,p\Delta_t={1-\alpha\over 2-\alpha}={2p-p'\over p'}=\Delta_{1,3}^{p,p'} for the perturbing field tt. As befits a non-unitary theory, some observables Or,s{\cal O}_{r,s} diverge at criticality.Comment: 18 pages, 5 figures; version 3 contains amplifications and minor typographical correction

    X-Ray Photoabsorption in KLL Resonances of O VI And Abundance Analysis

    Get PDF
    It is shown that photoabsorption via autoionizing resonances may be appreciable and used for abundance analysis. Analogous to spectral lines, the `resonance oscillator strength' f_r may be defined and evaluated in terms of the differential oscillator strength df/d(epsilon) that relates bound and continuum absorption. X-ray photoabsorption in KLL (1s2s2p) resonances of O VI is investigated using highly resolved relativistic photoionization cross sections with fine structure. It is found that f_r is comparable to that for UV dipole transition in O VI (2s - 2p) and the X-ray (1s^2 ^1S_0 - 1s2p ^1P^o_1) transition in O VII. The dominant O VI(KLL) components lie at 22.05 and 21.87 Angstroms. These predicted absorption features should be detectable by the Chandra X-Ray Observatory (CXO) and the X-Ray Multi-Mirror Mission (XMM). The combined UV/X-ray spectra of O VI/O VII should yield valuable information on the ionization structure and abundances in sources such as the `warm absorber' region of active galactic nuclei and the hot intergalactic medium. Some general implications of resonant photoabsorption are addressed.Comment: Astrophys. J. Letters (in press), 9 pages, 3 figure

    Detection of the Central Star of the Planetary Nebula NGC 6302

    Get PDF
    NGC 6302 is one of the highest ionization planetary nebulae known and shows emission from species with ionization potential >300eV. The temperature of the central star must be >200,000K to photoionize the nebula, and has been suggested to be up to ~ 400,000K. On account of the dense dust and molecular disc, the central star has not convincingly been directly imaged until now. NGC 6302 was imaged in six narrow band filters by Wide Field Camera 3 on HST as part of the Servicing Mission 4 Early Release Observations. The central star is directly detected for the first time, and is situated at the nebula centre on the foreground side of the tilted equatorial disc. The magnitudes of the central star have been reliably measured in two filters(F469N and F673N). Assuming a hot black body, the reddening has been measured from the (4688-6766\AA) colour and a value of c=3.1, A_v=6.6 mag determined. A G-K main sequence binary companion can be excluded. The position of the star on the HR diagram suggests a fairly massive PN central star of about 0.64,M_sun close to the white dwarf cooling track. A fit to the evolutionary tracks for (T,L,t)=(200,000K, 2000L_sun, 2200yr), where t is the nebular age, is obtained; however the luminosity and temperature remain uncertain. The model tracks predict that the star is rapidly evolving, and fading at a rate of almost 1 % per year. Future observations could test this prediction.Comment: 13 pages, 5 figures, submitted to ApJ Letters on 25.09.2009 accepted on 19.10.200

    Star formation in disk galaxies driven by primordial H_2

    Full text link
    We show that gaseous \HI disks of primordial composition irradiated by an external radiation field can develop a multiphase medium with temperatures between 10^2 and 10^4 K due to the formation of molecular hydrogen. For a given \HI column density there is a critical value of the radiation field below which only the cold \HI phase can exist. Due to a time decreasing quasar background, the gas starts cooling slowly after recombination until the lowest stable temperature in the warm phase is reached at a critical redshift z=zcrz=z_{cr}. Below this redshift the formation of molecular hydrogen promotes a rapid transition towards the cold \HI phase. We find that disks of protogalaxies with 10^{20}\simlt N_{HI}\simlt 10^{21} cm^{-2} are gravitationally stable at T104T\sim 10^4 K and can start their star formation history only at z \simlt z_{cr}\sim 2, after the gas in the central portion of the disk has cooled to temperatures T\simlt 300 K. Such a delayed starbust phase in galaxies of low gas surface density and low dynamical mass can disrupt the disks and cause them to fade away. These objects could contribute significantly to the faint blue galaxy population.Comment: 16 pages (LaTeX), 2 Figures to be published in Astrophysical Journal Letter

    Highly Excited Core Resonances in Photoionization of Fe XVII : Implications for Plasma Opacities

    Full text link
    A comprehensive study of high-accuracy photoionization cross sections is carried out using the relativistic Breit-Pauli R-matrix (BPRM) method for (hnu + Fe XVII --> Fe XVIII + e). Owing to its importance in high-temperature plasmas the calculations cover a large energy range, particularly the myriad photoexciation-of-core (PEC) resonances including the n = 3 levels not heretofore considered. The calculations employ a close coupling wave function expansion of 60 levels of the core ion Fe XVIII ranging over a wide energy range of nearly 900 eV between the n = 2 and n = 3 levels. Strong coupling effects due to dipole transition arrays 2p^5 --> 2p^4 (3s,3d) manifest themselves as large PEC resonances throughout this range, and enhance the effective photoionization cross sections orders of magnitude above the background. Comparisons with the erstwhile Opacity Project (OP) and other previous calculations shows that the currently available cross sections considerably underestimate the bound-free cross sections. A level-identification scheme is used for spectroscopic designation of the 454 bound fine structure levels of Fe XVII. Level-specific photoionization cross sections are computed for all levels. In addition, partial cross sections for leaving the core ion Fe XVII in the ground state are also obtained. These results should be relevant to modeling of astrophysical and laboratory plasma sources requiring (i) photoionization rates, (ii) extensive non-local-thermodynamic-equilibrium models, (iii) total unified electron-ion recombination rates including radiative and dielectronic recombination, and (iv) plasma opacities. We particularly examine PEC and non-PEC resonance strengths and emphasize their expanded role to incorporate inner-shell excitations for improved opacities, as shown by the computed monochromatic opacity of Fe XVII.Comment: 12 pages, 5 figures, Physical Review A (in press

    Cepheid Mass-loss and the Pulsation -- Evolutionary Mass Discrepancy

    Full text link
    I investigate the discrepancy between the evolution and pulsation masses for Cepheid variables. A number of recent works have proposed that non-canonical mass-loss can account for the mass discrepancy. This mass-loss would be such that a 5Mo star loses approximately 20% of its mass by arriving at the Cepheid instability strip; a 14Mo star, none. Such findings would pose a serious challenge to our understanding of mass-loss. I revisit these results in light of the Padova stellar evolutionary models and find evolutionary masses are (17±517\pm5)% greater than pulsation masses for Cepheids between 5<M/Mo<14. I find that mild internal mixing in the main-sequence progenitor of the Cepheid are able to account for this mass discrepancy.Comment: 15 pages, 3 figures, ApJ accepte
    corecore