1,057 research outputs found

    Doping Effects on the Performance of Paired Metal Catalysts for the Hydrogen Evolution Reaction

    Full text link
    Metal heteroatoms dispersed in nitrogen-doped graphene display promising catalytic activity for fuel cell reactions such as the hydrogen evolution reaction (HER). Here we explore the effects of dopant concentration on the synergistic catalytic behaviour of a paired metal atom active site comprised of Co and Pt atoms. The metals are coordinated to six atoms in a vacancy of N-doped graphene. We find that HER activity is enhanced with increasing N concentration, where the free energy of hydrogen atom adsorption ranges from 0.23 to -0.42 eV as the doping changes from a single N atom doped in the pore, to fully doped coordination sites. The results indicated that the effect of N is to make the Co atom more active towards H adsorption and presents a means through which transition metals can be modified to make more effective and sustainable fuel cell catalysts

    Validation of a Parkinson disease predictive model in a population-based study

    Get PDF
    Parkinson disease (PD) has a relatively long prodromal period that may permit early identification to reduce diagnostic testing for other conditions when patients are simply presenting with early PD symptoms, as well as to reduce morbidity from fall-related trauma. Earlier identification also could prove critical to the development of neuroprotective therapies. We previously developed a PD predictive model using demographic and Medicare claims data in a population-based case-control study. The area under the receiver-operating characteristic curve (AUC) indicated good performance. We sought to further validate this PD predictive model. In a randomly selected, population-based cohort of 115,492 Medicare beneficiaries aged 66–90 and without PD in 2009, we applied the predictive model to claims data from the prior five years to estimate the probability of future PD diagnosis. During five years of follow-up, we used 2010–2014 Medicare data to determine PD and vital status and then Cox regression to investigate whether PD probability at baseline was associated with time to PD diagnosis. Within a nested case-control sample, we calculated the AUC, sensitivity, and specificity. A total of 2,326 beneficiaries developed PD. Probability of PD was associated with time to PD diagnosis (p<0.001, hazard ratio = 13.5, 95% confidence interval (CI) 10.6–17.3 for the highest vs. lowest decile of probability). The AUC was 83.3% (95% CI 82.5%–84.1%). At the cut point that balanced sensitivity and specificity, sensitivity was 76.7% and specificity was 76.2%. In an independent sample of additional Medicare beneficiaries, we again applied the model and observed good performance (AUC = 82.2%, 95% CI 81.1%–83.3%). Administrative claims data can facilitate PD identification within Medicare and Medicare-aged samples

    The Steady State Fluctuation Relation for the Dissipation Function

    Get PDF
    We give a proof of transient fluctuation relations for the entropy production (dissipation function) in nonequilibrium systems, which is valid for most time reversible dynamics. We then consider the conditions under which a transient fluctuation relation yields a steady state fluctuation relation for driven nonequilibrium systems whose transients relax, producing a unique nonequilibrium steady state. Although the necessary and sufficient conditions for the production of a unique nonequilibrium steady state are unknown, if such a steady state exists, the generation of the steady state fluctuation relation from the transient relation is shown to be very general. It is essentially a consequence of time reversibility and of a form of decay of correlations in the dissipation, which is needed also for, e.g., the existence of transport coefficients. Because of this generality the resulting steady state fluctuation relation has the same degree of robustness as do equilibrium thermodynamic equalities. The steady state fluctuation relation for the dissipation stands in contrast with the one for the phase space compression factor, whose convergence is problematic, for systems close to equilibrium. We examine some model dynamics that have been considered previously, and show how they are described in the context of this work.Comment: 30 pages, 1 figur

    Evaluating the catalytic efficiency of paired, single-atom catalysts for the oxygen reduction reaction

    Get PDF
    Paired, single-atom catalysts have been shown to demonstrate synergistic effects computationally and experimentally which enable them to outperform the benchmark catalyst, Pt/C, for electrochemical reactions. We explore the limit of these catalysts by screening different transition metal atoms (M = Co, Pt, Fe, Ni) in nitrogen-doped graphene for their ability to catalyze the oxygen reduction reaction (ORR). We employ density functional theory methods to explore the electronic factors affecting catalytic activity in an effort to rationalize trends in the performance of materials which are promising candidates for the next generation of electrocatalysts. It is found that CoPt@N8V4, composed of paired Co and Pt in a nitrogen-doped four-atom vacancy in graphene (N8V4), performs ideally for the ORR with an overpotential (η) of 0.30 V, followed closely by Co and Ni (η = 0.35 V) and paired Co (η = 0.37 V). The origin of activity is suggested to be the changing reduction potential of the active Co atom via the local distortion of the pore by the spectating metal partner. We utilize the ORR scaling relations and plot catalytic activity on a volcano plot, which we correlate with the degree of antibonding interactions with the O atom in the OH intermediate of the ORR. We establish that the local tuning of paired catalysts allows for the reactivity of metal atoms to be specifically modified for desirable reactivity

    Deep-water macroalgae from the Canary Islands: new records and biogeographical relationships

    Get PDF
    Due to the geographical location and paleobiogeography of the Canary Islands, the seaweed flora contains macroalgae with different distributional patterns. In this contribution, the biogeographical relations of several new records of deep-water macroalgae recently collected around the Canarian archipelago are discussed. These are Bryopsidella neglecta (Berthotd) Rietema,Discosporangium mesarthrocarpum (Meneghini) Hauck, Hincksia onslowensis (Amsler et Kapraun)P.C. Silva, Syringoderma floridana Henry, Peyssonnelia harveyana J. Agardh, Cryptonemia seminervis(C. Agardh) J. Agardh, Botryodadia wynnei Ballantine, Gloiocladia blomquistii (Searles) R. E.Norris, PIahchrysis peltata (W. R. Taylor) P. Huv4 et H. Huv4, Leptofauchea brasiliensis Joly, and Sarcodiotheca divaricata W. R. Taylor. These new records, especially those in the Florideophyceae,support the strong affinity of the Canary Islands seaweed flora with the warm-temperate Mediterranean-Atlantic region. Some species are recorded for the first time from the east coast of the Atlantic Ocean, enhancing the biogeographic relations of the Canarian marine flora with that of the western Atlantic regions

    Breaking conjugate pairing in thermostatted billiards by magnetic field

    Full text link
    We demonstrate that in the thermostatted three-dimensional Lorentz gas the symmetry of the Lyapunov spectrum can be broken by adding to the system an external magnetic field not perpendicular to the electric field. For perpendicular field vectors, there is a Hamiltonian reformulation of the dynamics and the conjugate pairing rule still holds. This indicates that symmetric Lyapunov spectra has nothing to do with time reversal symmetry or reversibility; instead, it seems to be related to the existence of a Hamiltonian connection.Comment: 4 pages, 3 figure

    Structure and transcription of the Drosophila melanogaster vermilion gene and several mutant alleles.

    Get PDF
    The nucleotide sequence and intron-exon structure of the Drosophila melanogaster vermilion (v) gene have been determined. In addition, the sites of several mutations and the effects of these mutations on transcription have been examined. The major v mRNA is generated upon splicing six exons of lengths (5' to 3') 83, 161, 134, 607, 94, and 227 nucleotides (nt). A minor species of v mRNA is initiated at an upstream site and has a 5' exon of at least 152 nt which overlaps the region included in the 83-nt exon of the major v RNA. The three v mutations, v1, v2, and vk, which can be suppressed by mutations at suppressor of sable, su(s), are insertions of transposon 412 at the same position in exon 1, 36 nt downstream of the major transcription initiation site. Despite the 7.5-kilobase insertion in these v alleles, a reduced level of wild-type-sized mRNA accumulates in suppressed mutant strains. The structure and transcription of several unsuppressible v alleles have also been examined. The v36f mutation is a B104/roo insertion in intron 4 near the splice donor site. A mutant carrying this alteration accumulates a very low level of mRNA that is apparently polyadenylated at a site within the B104/roo transposon. The v48a mutation, which deletes approximately 200 nt of DNA, fuses portions of exons 3 and 4 without disruption of the translational reading frame. A smaller transcript accumulates at a wild-type level, and thus an altered, nonfunctional polypeptide is likely to be synthesized in strains carrying this mutation.(ABSTRACT TRUNCATED AT 250 WORDS

    Establishing a Reference Baseline for Midday Stem Water Potential in Olive and Its Use for Plant-Based Irrigation Management

    Get PDF
    Midday stem water potential (SWP) is rapidly becoming adopted as a standard tool for plant-based irrigation management in many woody perennial crops. A reference or “baseline” SWP has been used in some crops (almond, prune, grape, and walnut) to account for the climatic influence of air vapor pressure deficit (VPD) on SWP under non-limiting soil moisture conditions. The baseline can be determined empirically for field trees maintained under such non-limiting conditions, but such conditions are difficult to achieve for an entire season. We present the results of an alternative survey-based approach, using a large set of SWP and VPD data collected over multiple years, from irrigation experiments in olive orchards located in multiple countries [Spain, United States (California), Italy, and Argentina]. The relation of SWP to midday VPD across the entire data set was consistent with an upper limit SWP which declined with VPD, with the upper limit being similar to that found in Prunus. A best fit linear regression estimate for this upper limit (baseline) was found by selecting the maximum R2 and minimum probability for various upper fractions of the SWP/VPD relation. In addition to being surprisingly similar to the Prunus baseline, the olive baseline was also similar (within 0.1 MPa) to a recently published mechanistic olive soil-plant-atmosphere-continuum (SPAC) model for “super high density” orchard systems. Despite similarities in the baseline, the overall physiological range of SWP exhibited by olive extends to about −8 MPa, compared to about −4 MPa for economically producing almond. This may indicate that, despite species differences in physiological responses to low water availability (drought), there may be convergent adaptations/acclimations across species to high levels of water availability. Similar to its use in other crops, the olive baseline will enable more accurate and reproducible plant-based irrigation management for both full and deficit irrigation practices, and we present tentative SWP guidelines for this purpose
    corecore