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Parkinson disease (PD) has a relatively long prodromal period that may permit early identification to reduce diagnostic testing for
other conditions when patients are simply presenting with early PD symptoms, as well as to reduce morbidity from fall-related
trauma. Earlier identification also could prove critical to the development of neuroprotective therapies. We previously developed a
PD predictive model using demographic and Medicare claims data in a population-based case-control study. +e area under the
receiver-operating characteristic curve (AUC) indicated good performance. We sought to further validate this PD predictive
model. In a randomly selected, population-based cohort of 115,492Medicare beneficiaries aged 66–90 and without PD in 2009, we
applied the predictive model to claims data from the prior five years to estimate the probability of future PD diagnosis. During five
years of follow-up, we used 2010–2014 Medicare data to determine PD and vital status and then Cox regression to investigate
whether PD probability at baseline was associated with time to PD diagnosis. Within a nested case-control sample, we calculated
the AUC, sensitivity, and specificity. A total of 2,326 beneficiaries developed PD. Probability of PD was associated with time to PD
diagnosis (p< 0.001, hazard ratio� 13.5, 95% confidence interval (CI) 10.6–17.3 for the highest vs. lowest decile of probability).
+e AUC was 83.3% (95% CI 82.5%–84.1%). At the cut point that balanced sensitivity and specificity, sensitivity was 76.7% and
specificity was 76.2%. In an independent sample of additional Medicare beneficiaries, we again applied the model and observed
good performance (AUC� 82.2%, 95% CI 81.1%–83.3%). Administrative claims data can facilitate PD identification within
Medicare and Medicare-aged samples.

1. Introduction

Parkinson disease (PD) is a progressive neurodegenerative
disorder that is diagnosed on the basis of motor symptoms.
However, PD is characterized by both motor and nonmotor
symptoms, which evolve over years. +e period preceding
PD diagnosis in which these symptoms occur, called the
prodromal period, may predate the diagnosis by decades [1].
Traumatic brain injuries [2], fractures [3, 4], and injurious
falls more generally [4] occur more frequently among in-
dividuals with undiagnosed PD relative to comparable in-
dividuals without PD. Motor symptoms occur for at least
five years prior to PD diagnosis [5], and the increased risk of
fractures among prodromal PD patients begins ∼6-7 years
prior to PD diagnosis [3]. Accordingly, tools to facilitate

early PD diagnosis could have both broad application and
potentially important public health impact, for example,
through a reduction in fall-related morbidity [2–7]. Since the
motor symptoms are primarily due to loss of dopaminergic
neurons in the substantia nigra, motor symptoms during the
prodromal period are likely to be responsive to dopami-
nergic therapy.

Early identification of PD might be facilitated by known
strong associations between PD and age, sex, race/ethnicity
[8], smoking [9, 10], and several medical conditions in-
cluding anosmia/hyposmia [11], constipation [12, 13], REM
sleep behavior disorder [14], and depression [15, 16]. +ese
are typically included as core predictors in algorithms for
identifying PD, and we recently identified numerous other
predictors in a cross-validated model based only on
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Medicare data using a population-based sample of benefi-
ciaries with and without incident PD [17]. Within this same
case-control sample, this model performed well, with an area
under the receiver-operating characteristic curve (AUC) of
85.7%. A predictive model that only uses administrative
health care data can potentially be applied to screen the
entire population. +erefore, we sought to further evaluate
the performance of our predictive model by reapplying the
model. We applied the model to controls from our original
study and then followed them for five years for PD diagnosis.
In addition, we evaluated model performance by reapplying
the model in an even larger, independent random sample of
Medicare beneficiaries, in order to demonstrate external
validity.

2. Materials and Methods

2.1. Study Approval and Data Protection. +e Washington
University Human Research Protection Office and the
Centers for Medicare and Medicaid Services (CMS) ap-
proved the study. All data were deidentified prior to release
from CMS.

2.2. StudyOverview. We used U.S. Medicare data to conduct
all analyses. Nearly all individuals ≥65 years old in the U.S.
utilize Medicare, thus allowing for the construction of large,
nationwide, population-based studies in this age group. In
the present work, we started with all controls from our
original PD case-control study [17], who represented a
population-based sample of beneficiaries age eligible for
Medicare and without PD in 2009 (Figure 1). We then
restricted to those who survived through the end of 2009 and
followed this cohort for up to five years. From this cohort, we
constructed a nested case-control sample to formally at-
tempt an internal validation of the predictive model. +e
cohort and nested case-control sample, as well as the specific
Medicare data, study criteria, and case ascertainment
method that we used to construct them, are detailed below.

2.3. Available Medicare Data. We used Medicare data from
2004 to 2014. We used both base files and detailed claims
data. Base files enumerate all beneficiaries in the respective
year and provide basic demographic information and a
summary of insurance coverage for each beneficiary. We
used the base file from 2009 to assess study eligibility criteria
and to identify the above cohort. We used base files from
2010 to 2014 to follow this cohort forward, i.e., ascertain vital
status and date of death if applicable. We used carrier
(physician/supplier part B), outpatient, inpatient, skilled
nursing facility, durable medical equipment, and home
health care claims data from 2004 to 2014. Claims files
include the International Classification of Diseases, Ninth
Revision (ICD-9) diagnosis, ICD-9 procedure, Current
Procedural Terminology (CPT) procedure, and other
Healthcare Common Procedure Coding System (HCPCS)
codes. We used these files to determine the PD status and
date of diagnosis and all medical predictor variables in-
cluding smoking.

2.4.PDAscertainmentMethod. We identified PD as ≥1 ICD-
9 332 or 332.0 code, without Lewy body dementia (ICD-9
331.82), other extrapyramidal disease and abnormal
movement disorders (ICD-9 333 or 333.0), or typographic
error (nonpyogenic meningitis (ICD-9 322 or 322.0) without
diagnostic lumbar puncture (CPT 62270)) [17]. We con-
sidered the date of the first code as the date of diagnosis. We
noted whether any codes for PD were from a neurologist.

2.5. Study Participants and Follow-Up Period. We derived
the cohort and nested case-control sample from the original
controls in the case-control study we used to develop the PD
predictive model validated here [17]. +ese original controls
represented a 0.5% random sample of all Medicare bene-
ficiaries who met all of the following criteria in 2009: no PD,
age 66–90, U.S. residence, and Medicare Part A/B coverage
but no non-Medicare coverage. We restricted to benefi-
ciaries who were at least 66 years, 11 months old to ensure
that all beneficiaries represented a population-based sample
and had at least two full years of claims data. We restricted to
beneficiaries aged ≤90 years because it is well documented
that age-specific incidence tapers in older age groups, es-
pecially after ∼85–90 years of age [8, 17, 18]. +e cohort in
the present work comprised all of the original controls who
were alive at the beginning of follow-up on January 1, 2010
(N� 115,492) (Figure 1). We followed this population-based
cohort for up to five years (until PD diagnosis, death, or end
of follow-up on December 31, 2014, for a mean follow-up
time of 4.4 years and standard deviation (SD) of 1.3 years).

Within this cohort, we constructed a nested case-control
study. Cases were all cohort members who developed PD in
the five years of follow-up (N� 2,326 incident PD cases), and
controls were all noncases who survived to a randomly
assigned reference date during the same period (N� 99,662)
(Figure 1). +is nested case-control sample paralleled the
original case-control study [17], which allowed us to
recalculate the predictor variables, and hence probability of
PD, as of the PD diagnosis date or comparable reference
date.

2.6. PD Predictive Model in the Original Case-Control Study.
We published our PD predictive model in detail previously
[17]. +is model includes the following predictors: age, sex,
race/ethnicity, ever smoking, the total number of unique
(distinct) diagnosis codes, and each of 536 individual di-
agnosis or procedure codes. Categories with >10 codes that
positively predicted PD included PD symptoms, autonomic
symptoms, trauma/falls, gait/balance, immobility, psychi-
atric conditions, cognitive conditions, and tests designed to
diagnose medical conditions other than PD (e.g., brain
imaging and blood tests for diabetes, hypothyroidism, vi-
tamin B deficiencies, and syphilis). Prominent categories of
diagnosis and procedure codes that were negative predictors
of PD related to physical activity, cardiovascular disease,
cancer, infectious conditions, and tobacco use. Of the 536
codes in the predictive model, 54 (10.1%) were HCPCS
codes, which are more specific to Medicare than ICD-9/CPT
codes because HCPCS codes are not universally used. +ese
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54 HCPCS codes included medical transportation, durable
medical equipment, nonoral drugs such as chemotherapy,
and orthotic and prosthetic procedures.

2.7. Calculation of Predictors and the Probability of PD.
We applied the above PD predictive model in the present
study, hereafter the “full” model. Specifically, to estimate the
predicted probability of PD for each participant in the
present study, we (1) determined the value of each predictor
(e.g., presence or absence of each diagnosis/procedure code),
(2) multiplied each predictor by the respective coefficient
that we previously published [17], (3) summed the resulting
products, and (4) added the original model’s constant term.
We used the 2009 base file to calculate age and to obtain sex
and race/ethnicity. We used these same demographic data
and >600 diagnosis/procedure codes from the claims data to
estimate the probability of having ever smoked tobacco
[17, 19]. We assigned beneficiaries with a tobacco-specific
code (e.g., ICD-9 V15.82 or 305.1) a smoking probability of
100% and then used a validated logistic regression predictive
model to assign smoking probability to all other benefi-
ciaries. Finally, we used the claims data to determine the
total number of unique diagnosis codes and the presence or
absence of each of the 536 diagnosis/procedure codes in the
predictive model. We considered all codes from 2004–2014
up to the PD diagnosis or control reference date when
recalculating the predicted probability of PD for the nested
case-control sample to parallel the original case-control
study. Secondarily, we restricted to codes from 2004 to 2009
when calculating the probability of PD as of baseline
(January 1, 2010). +is restriction had the practical effect of
applying an exposure lag of up to five years (mean of 2.4
years in the nested case-control sample). +erefore, we only
applied this restriction when necessary, i.e., for the cohort or
to examine the effect of lagging in the nested case-control
sample.

For comparison to the “full” model, we repeated the
above for a simpler model, henceforth the “basic” model. In

this basic model, we calculated the probability of PD using
only age, sex, race/ethnicity, smoking, constipation, REM
sleep behavior disorder, and anosmia/hyposmia as predic-
tors, either with or without the total number of unique
diagnosis codes. We also calculated the probability of PD on
the basis of age alone, henceforth the “age-only” model.

2.8. Statistical Analysis. We used Stata [20] for all analyses.
We calculated the overall PD incidence for this population-
based sample of Medicare-aged individuals by dividing the
total number of new PD diagnoses (2,326) by the total
number of person-years at risk in the cohort over the five
years of follow-up (504,246). We calculated person-years
directly using the PD date of diagnosis in the claims files and
the date of death from the base files. We estimated the
relative risk of PD in relation to selected demographic
characteristics by calculating odds ratios (ORs) and 95%
confidence intervals (CIs), using logistic regression, in the
nested case-control sample. We established a two-sided
alpha (α) of 0.05 as the cutoff level for statistical significance.

To assess performance of the PD predictive model, we
calculated the following recommended [21] metrics in the
nested case-control sample: (1) difference between the mean
predicted probability of PD for those who did and did not
develop PD; (2) AUC; and (3) sensitivity and specificity. We
calculated the latter at the cut point that balanced sensitivity
and specificity, rather than the cut point that maximized the
number classified accurately, because most participants did
not have PD. We repeated these calculations in secondary
analyses in which we either (1) restricted cases to 449 (19%)
who had ≥1 PD diagnosis code from a neurologist, (2)
restricted cases to 1,596 (69%) who had ≥2 PD diagnosis
codes, (3) used our secondary (lagged) predictors, or (4)
eliminated the contribution of the 54 HCPCS codes (as-
sumed a value of zero). We included the latter in order to
investigate the transportability of the predictive model to
non-Medicare administrative claims data in which only
ICD-9 and CPT codes are available. In order to investigate

N = 118,095
0.5% random sample of

all Medicare beneficiaries
without PD and who met 
all study criteria in 2009∗

N = 115,492
Full cohort of Medicare beneficiaries

without PD as of January 1, 2010
(followed for five years)

N = 2,603
Died before baseline

(January 1, 2010)

N = 2,326
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N = 99,662
Did not develop PD
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before randomly assigned
reference date

N = 372
Uncertain PD diagnosis (ICD-9
331.82; 333 or 333.0; or 322 or
322.0 (without CPT 62270))

C
on

tro
ls

Ca
se

s

N
es

te
d 

ca
se

-c
on

tro
l

Figure 1: Participants in the cohort and nested case-control sample (U.S. Medicare). ∗Selection of participants in both the cohort and the
nested case-control sample was according to the following criteria: all beneficiaries were required to have Medicare Part A and/or B
coverage, be U.S. residence, be of age 66–90 in 2009, and be alive without PD as of January 1, 2010. We followed participants from January 1,
2010, through December 31, 2014. 118,095 beneficiaries did not have PD in 2009 and served as the controls in the original case-control study
in which the PD predictive model was developed [17]. Abbreviations: CPT�Current Procedural Terminology; ICD-9� International
Classification of Diseases, Version 9; PD�Parkinson disease.
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the external validity of the predictive model to samples that
are demographically different from our U.S. population-
based sample, we also repeated analyses while stratifying by
age, sex, and race/ethnicity.

Finally, in the cohort, we conducted a survival analysis to
assess the association between the predicted probability of
PD at baseline and the development of PD. In this survival
analysis, we followed all participants from January 1, 2010,
through the date of PD diagnosis, death, or December 31,
2014, whichever came first. We censored beneficiaries with a
diagnosis of Lewy body dementia, other neurodegenerative
disease of the basal ganglia, or probable typographic error at
the first date of the excluded diagnosis; that is, these indi-
viduals were not counted as having developed PD in survival
analysis. We tested the proportional hazards assumption
using Schoenfeld residuals. We then used Cox proportional
hazards regression to calculate the hazard ratio (HR) and
95% CI for PD, i.e., the time to PD diagnosis, in relation to
the predicted probability of PD. We categorized the prob-
ability in deciles to allow for a nonlinear association.

3. Results

3.1. PD Incidence andDemographicRisk Factors. +e average
annual incidence of PD in our population-based sample of
Medicare-aged beneficiaries over five years was 461 per
100,000 person-years. +e mean time to the first diagnosis
code with PD was 2.37 years (standard deviation (SD) 1.4,
median 2.29) after baseline. +e risk of PD was greater with
increasing age, for men, in non-Hispanic white than black
individuals, and among never smokers (Table 1).

3.2. Predictive Model Performance: Primary Analysis.
When we applied the full model to the nested case-control
sample, the AUC was 83.3% (95% CI 82.5%–84.1%), fairly
similar to our previous estimate. Sensitivity was 76.7% (95%
CI 76.4%–77.0%) and specificity was 76.2% (95% CI 76.0%–
76.5%) at the cut point that most closely balanced sensitivity
and specificity. Likewise, 76.2% of participants were clas-
sified correctly at this cut point. +e difference between the
mean predicted probabilities of cases and controls was 0.33.

3.3. Predictive Model Performance: Secondary Analyses.
All of the above measures were the same or slightly better
when we restricted to cases with ≥1 code for PD from a
neurologist (AUC� 83.6%, 95% CI 81.8%–85.4%) or to cases
with ≥2 codes for PD (AUC� 83.9%, 95% CI 82.9%–84.8%).
When we eliminated the contribution of the 54 HCPCS
codes, model performance was not materially reduced
(AUC� 83.3%, 95% CI 82.4%–84.0%; sensitivity 76.4% and
specificity 76.2%). +e AUC did not differ markedly
according to sex (AUC� 82.7% in men, 83.6% in women) or
race/ethnicity (83.5% in non-Hispanic white beneficiaries,
82.8% in black beneficiaries, and 80.8% in all other bene-
ficiaries), but the AUC consistently decreased with age.

In the secondary analysis in which we restricted to di-
agnosis and procedure codes recorded prior to the baseline
date on January 1, 2010, i.e., lagged the predictor variables,

performance was lower. +e AUC was 73.1% (95% CI
72.1%–74.2%). Sensitivity was 67.3% (95% CI 67.0%–67.6%)
and specificity was 66.8% (95% CI 66.5%–67.1%) at the cut
point that most closely balanced sensitivity and specificity.
However, performance measures successively improved
when we explored the effect of reducing the number of years
of follow-up (mean lag).

+e predicted probability of PD calculated as of baseline
using the full model was strongly and significantly associated
with time to PD diagnosis, i.e., the HR for PD, in the cohort
(p< 0.001, Figure 2). +e HR for PD among those with the
top vs. the bottom decile of predicted probability of PD was
13.5 (95% CI 10.6–17.3). +e full model performed better
than the basic models and the age-only model at the top 2-3
deciles of predicted probability of PD.

3.4. Predictive Model Performance: Post Hoc Analysis.
Given the above promising results, we sought to confirm
external validity using an independent Medicare dataset in a
post hoc analysis. Specifically, we obtained complete
Medicare claims data from 2010 to 2014 from a random
sample of Medicare beneficiaries who met the same eligi-
bility criteria in 2009 as the original and above samples. We
then focused on those who survived up to 2014 without the
diagnosis of PD (N= 323,065; age 71–94 years, mean 79.6
years in 2014). Of these, we identified 1,365 with incident PD
in 2014. We applied the predictive model to the claims data
from 2010 to 2014 up to the PD diagnosis or random ref-
erence date to calculate the predicted probability of PD. +e
AUC was 82.2% (95% CI 81.1%–83.3%). Sensitivity was
75.8% (95% CI 75.7%–76.0%) and specificity was 76.7%
(95% CI 76.6%–76.9%) at the cut point that most closely
balanced sensitivity and specificity.

4. Discussion

In two large, population-based samples of Medicare
beneficiaries, we validated the predictive model of PD that
we developed previously [17]. Performance according to
the AUC was similar to our earlier estimates, and, more
importantly, the current validation study confirms that our
PD predictive model is a possible cost-effective strategy to
identify those with a relatively high probability of having
prodromal PD. Earlier identification of PD could have
important public health impact. First, earlier identification
of individuals with prodromal PD may reduce morbidity
and mortality through early treatment, given the growing
evidence that prodromal PD patients have a greater risk of
fall-related traumatic injuries than the general population
[2–4]. Second, earlier PD identification would likely re-
duce the amount of diagnostic testing that prodromal PD
patients often undergo as a consequence of the symptoms
of undiagnosed PD. +ird, clinical trials of potential
neuroprotective therapies might have greater chance of
demonstrating effectiveness when PD patients are treated
prior to substantial loss of substantia nigra neurons. While
we completed all model development and validation
within U.S. Medicare-based samples, we confirmed that
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Table 1: Characteristics of participants in the nested case-control study (U.S. Medicare).

Cases Controls
OR (95% CI) Mutually adjustedN� 2,326 N� 99,662

n (%) n (%) OR (95% CI)a

Age, years
66–69 189 (8.1) 16,456 (16.5) 1.0 (reference) 1.0 (reference)
70–74 552 (23.7) 31,739 (31.9) 1.51 (1.28–1.79) 1.51 (1.28–1.78)
75–79 623 (26.8) 23,202 (23.3) 2.34 (1.98–2.75) 2.29 (1.94–2.70)
80–84 572 (24.6) 17,481 (17.5) 2.85 (2.41–3.36) 2.75 (2.33–3.26)
85–90 390 (16.8) 10,784 (10.8) 3.15 (2.64–3.75) 3.05 (2.55–3.64)
Mean (SD) 78.0 (5.9) 75.9 (6.0) 1.058 (1.051–1.065)b N/A
Sex
Male 1,188 (51.1) 42,141 (42.3) 1.0 (reference) 1.0 (reference)
Female 1,138 (48.9) 57,521 (57.7) 0.70 (0.65–0.76) 0.57 (0.52–0.63)
Race/ethnicity
White 2,056 (88.4) 85,941 (86.2) 1.0 (reference) 1.0 (reference)
Black 121 (5.2) 7,477 (7.5) 0.68 (0.56–0.81) 0.72 (0.60–0.87)
Pacific Islander/otherc 25 (1.1) 1,715 (1.7) 0.61 (0.41–0.91) 0.65 (0.43–0.96)
Asian 57 (2.5) 2,257 (2.3) 1.06 (0.81–1.38) 1.02 (0.78–1.33)
Hispanic 56 (2.4) 1,878 (1.9) 1.25 (0.95–1.63) 1.16 (0.88–1.52)
Native American 11 (0.5) 394 (0.4) 1.17 (0.64–2.13) 1.26 (0.69–2.31)
Smoking indexd≥median 1,172 (50.4) 56,100 (56.3) 0.79 (0.73–0.86) 0.72 (0.66–0.80)
OR� odds ratio; CI� confidence interval; SD standard deviation; N/A�not applicable. aMutually adjusted indicates that all ORs are adjusted for all other
variables in the column. bPer year of age. cIncludes 98 participants with race/ethnicity coded as “Unknown.” dPredicted probability of ever smoking divided by
the person’s total number of unique diagnosis codes (or 1 for 5,804 participants without any diagnosis codes).
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of unique ICD-9 diagnosis codes (continuous) as a measure of overall use of medical care. Full model: predicted by age, sex, race/ethnicity,
smoking, total number of unique ICD-9 diagnosis codes, all as modeled above, and 536 diagnosis or procedure codes including codes for
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Version 9; HR� hazard ratio; PD� Parkinson disease.+e predicted probability of PD as of baseline for the full model and both basic models
was positively associated with the hazard ratio (HR) for PD (p< 0.001), with the highest HR occurring for the top decile of predictive
probabilities from the full model (HR� 13.5, 95% CI 10.6–17.3). +e predicted probability of PD for the full model departed from the three
simpler models in the top 2-3 deciles of predicted probabilities when these probabilities were assessed in terms of the magnitude of their
association with time to PD diagnosis.
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this model likely would be transportable to other ad-
ministrative datasets as well, especially those with ICD-9
and CPT codes.

Ideally, a PD predictive model based on administrative
data would identify people with prodromal PD using
medical diagnosis codes that capture symptoms other than
the early motor symptoms of PD. +e motor symptoms
generally begin occurring relatively close to diagnosis, so
nonmotor symptoms are likely more important to the
identification of PD even earlier. In this regard, we con-
firmed the feasibility of a useful predictive model based on
lagged predictor variables. Even with our most aggressive
lag, 2.4 years on average, the AUC indicated that the model
performed substantially better than both chance and the
simpler predictive models. +us, future efforts should focus
on developing a predictive model that identifies people
with prodromal PD much earlier in their disease course.
Whether these efforts will require additional data not
readily available in medical claims data remains to be
determined.

While these results are very encouraging and consistent
with our initial validation of our PD predictive model, we do
note some limitations. We conducted this further validation
using a Medicare-based cohort, and we also used Medicare
data to develop this predictive model. +is cohort, however,
was a large, randomly selected, population-based sample of
individuals who are likely representative of individuals aged
65 years and older in the U.S. +is model has yet to be
applied to a younger or more racially diverse population or
to a cohort that includes other types of insurance benefi-
ciaries. Application in each of these groups is recommended
to demonstrate the generalizability of the model. However, it
is very encouraging that the performance of our model was
particularly good in the youngest beneficiaries and did not
differ markedly according to race/ethnicity. +e relatively
few HCPCS codes in the model potentially could be derived
in non-Medicare claims data, or as we demonstrated, even
excluded with little impact on model performance. All other
diagnosis and procedure codes included in the model follow
national (CPT) or international (ICD-9) classification sys-
tems for easy implementation in non-Medicare insurance
claims in the U.S. and possibly some other countries as well.
Another potential limitation is that both our cohort and
nested case-control sample are not strictly independent of
our original sample. Nonetheless, we also validated the
predictive model in an independent Medicare cohort. Model
performance again was good, only slightly lower, which is
unsurprising given that this was an external validation in a
somewhat older cohort. Finally, we relied on claims data for
PD ascertainment. While the PD incidence we observed in
the present population-based cohort is consistent with that
in our earlier case-control study [17], it is markedly higher
than that observed in another sample of individuals with
insurance coverage [8].+is suggests that, in our study, some
beneficiaries who received a code for PDmight not have PD.
Nonetheless, all metrics for validating the predictive model
were improved, if anything, when we restricted PD diag-
noses to those made by a neurologist or with ≥2 PD di-
agnosis codes.

5. Conclusion

In summary, our predictive model successfully predicted PD
in both an internal and an external validation study. +is
predictive model has the potential to be used as a cost-ef-
fective means to facilitate the earlier identification of patients
with PD by simply applying the model to medical claims
data.
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