221 research outputs found

    Plzf Regulates Germline Progenitor Self-Renewal by Opposing mTORC1

    Get PDF
    SummaryHyperactivity of mTORC1, a key mediator of cell growth, leads to stem cell depletion, although the underlying mechanisms are poorly defined. Using spermatogonial progenitor cells (SPCs) as a model system, we show that mTORC1 impairs stem cell maintenance by a negative feedback from mTORC1 to receptors required to transduce niche-derived signals. We find that SPCs lacking Plzf, a transcription factor essential for SPC maintenance, have enhanced mTORC1 activity. Aberrant mTORC1 activation in Plzf −/− SPCs inhibits their response to GDNF, a growth factor critical for SPC self-renewal, via negative feedback at the level of the GDNF receptor. Plzf opposes mTORC1 activity by inducing expression of the mTORC1 inhibitor Redd1. Thus, we identify the mTORC1-Plzf functional interaction as a critical rheostat for maintenance of the spermatogonial pool and propose a model whereby negative feedback from mTORC1 to the GDNF receptor balances SPC growth with self-renewal

    Epigenetic profiles signify cell fate plasticity in unipotent spermatogonial stem and progenitor cells

    Full text link
    Spermatogonial stem and progenitor cells (SSCs) generate adult male gametes. During in vitro expansion, these unipotent murine cells spontaneously convert to multipotent adult spermatogonial-derived stem cells (MASCs). Here we investigate this conversion process through integrative transcriptomic and epigenomic analyses. We find in SSCs that promoters essential to maintenance and differentiation of embryonic stem cells (ESCs) are enriched with histone H3-lysine4 and -lysine 27 trimethylations. These bivalent modifications are maintained at most somatic promoters after conversion, bestowing MASCs an ESC-like promoter chromatin. At enhancers, the core pluripotency circuitry is activated partially in SSCs and completely in MASCs, concomitant with loss of germ cell-specific gene expression and initiation of embryonic-like programs. Furthermore, SSCs in vitro maintain the epigenomic characteristics of germ cells in vivo. Our observations suggest that SSCs encode innate plasticity through the epigenome and that both conversion of promoter chromatin states and activation of cell type-specific enhancers are prominent features of reprogramming

    Vascular differentiation of multipotent spermatogonial stem cells derived from neonatal mouse testis

    Get PDF
    We previously reported the successful establishment of embryonic stem cell (ESC)-like multipotent spermatogonial stem cells (mSSCs) from neonatal mouse testis. Here, we examined the ability of mSSCs to differentiate into vascular endothelial cells and smooth muscle cells, and compared to that of mouse ESCs. We used real-time reverse transcriptase polymerase chain reaction and immunohistochemistry to examine gene expression profiles of mSSCs and ESCs during in vitro vascular differentiation. Both mSSCs and ESCs exhibited substantial increase in the expression of mesodermal markers, such as Brachyury, Flk1, Mesp1, Nkx2.5, and Islet1, and a decrease in the expression of pluripotency markers, such as Oct3/4 and Nanog during the early stage of differentiation. The mRNA levels of vascular endothelial (VE)-cadherin and CD31 gradually increased in both differentiated mSSCs and ESCs. VE-cadherin- or CD31-positive cells formed sprouting branch-like structures, as observed during embryonic vascular development. At the same time, vascular smooth muscle cell-specific markers, such as myocardin and α-smooth muscle actin (SMA), were also highly expressed in differentiated mSSCs and ESCs. Immunocytochemical analysis revealed that the differentiated cells expressed both α-SMA and SM22-α proteins, and exhibited the intracellular fibril structure typical of smooth muscle cells. Overall, our findings showed that mSSCs have similar vascular differentiation abilities to those of ESCs, suggesting that mSSCs may be an alternative source of autologous pluripotent stem cells for vascular regeneration

    c-Kit-Mediated Functional Positioning of Stem Cells to Their Niches Is Essential for Maintenance and Regeneration of Adult Hematopoiesis

    Get PDF
    The mechanism by which hematopoietic stem and progenitor cells (HSPCs) through interaction with their niches maintain and reconstitute adult hematopoietic cells is unknown. To functionally and genetically track localization of HSPCs with their niches, we employed novel mutant loxPs, lox66 and lox71 and Cre-recombinase technology to conditionally delete c-Kit in adult mice, while simultaneously enabling GFP expression in the c-Kit-deficient cells. Conditional deletion of c-Kit resulted in hematopoietic failure and splenic atrophy both at steady state and after marrow ablation leading to the demise of the treated adult mice. Within the marrow, the c-Kit-expressing GFP+ cells were positioned to Kit ligand (KL)-expressing niche cells. This c-Kit-mediated cellular adhesion was essential for long-term maintenance and expansion of HSPCs. These results lay the foundation for delivering KL within specific niches to maintain and restore hematopoiesis

    Characterization of Spermatogonial Stem Cells Lacking Intercellular Bridges and Genetic Replacement of a Mutation in Spermatogonial Stem Cells

    Get PDF
    Stem cells have a potential of gene therapy for regenerative medicine. Among various stem cells, spermatogonial stem cells have a unique characteristic in which neighboring cells can be connected by intercellular bridges. However, the roles of intercellular bridges for stem cell self-renewal, differentiation, and proliferation remain to be elucidated. Here, we show not only the characteristics of testis-expressed gene 14 (TEX14) null spermatogonial stem cells lacking intercellular bridges but also a trial application of genetic correction of a mutation in spermatogonial stem cells as a model for future gene therapy. In TEX14 null testes, some genes important for undifferentiated spermatogonia as well as some differentiation-related genes were activated. TEX14 null spermatogonial stem cells, surprisingly, could form chain-like structures even though they do not form stable intercellular bridges. TEX14 null spermatogonial stem cells in culture possessed both characteristics of undifferentiated and differentiated spermatogonia. Long-term culture of TEX14 null spermatogonial stem cells could not be established likely secondary to up-regulation of CDK4 inhibitors and down-regulation of cyclin E. These results suggest that intercellular bridges are essential for both maintenance of spermatogonial stem cells and their proliferation. Lastly, a mutation in Tex14+/− spermatogonial stem cells was successfully replaced by homologous recombination in vitro. Our study provides a therapeutic potential of spermatogonial stem cells for reproductive medicine if they can be cultured long-term

    The Adhesion GPCR GPR125 is specifically expressed in the choroid plexus and is upregulated following brain injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>GPR125 belongs to the family of <it>Adhesion </it>G protein-coupled receptors (GPCRs). A single copy of GPR125 was found in many vertebrate genomes. We also identified a <it>Drosophila </it>sequence, DmCG15744, which shares a common ancestor with the entire Group III of <it>Adhesio</it>n GPCRs, and also contains Ig, LRR and HBD domains which were observed in mammalian GPR125.</p> <p>Results</p> <p>We found specific expression of GPR125 in cells of the choroid plexus using <it>in situ </it>hybridization and protein-specific antibodies and combined <it>in situ</it>/immunohistochemistry co-localization using cytokeratin, a marker specific for epithelial cells. Induction of inflammation by LPS did not change GPR125 expression. However, GPR125 expression was transiently increased (almost 2-fold) at 4 h after traumatic brain injury (TBI) followed by a decrease (approximately 4-fold) from 2 days onwards in the choroid plexus as well as increased expression (2-fold) in the hippocampus that was delayed until 1 day after injury.</p> <p>Conclusion</p> <p>These findings suggest that GPR125 plays a functional role in choroidal and hippocampal response to injury.</p

    Isolation and Characterization of Pluripotent Human Spermatogonial Stem Cell-Derived Cells

    Get PDF
    Several reports have documented the derivation of pluripotent cells (multipotent germline stem cells) from spermatogonial stem cells obtained from the adult mouse testis. These spermatogonia-derived stem cells express embryonic stem cell markers and differentiate to the three primary germ layers, as well as the germline. Data indicate that derivation may involve reprogramming of endogenous spermatogonia in culture. Here, we report the derivation of human multipotent germline stem cells (hMGSCs) from a testis biopsy. The cells express distinct markers of pluripotency, form embryoid bodies that contain derivatives of all three germ layers, maintain a normal XY karyotype, are hypomethylated at the H19 locus, and express high levels of telomerase. Teratoma assays indicate the presence of human cells 8 weeks post-transplantation but limited teratoma formation. Thus, these data suggest the potential to derive pluripotent cells from human testis biopsies but indicate a need for novel strategies to optimize hMGSC culture conditions and reprogramming

    Evaluation of Poly-Mechanistic Antiangiogenic Combinations to Enhance Cytotoxic Therapy Response in Pancreatic Cancer

    Get PDF
    Gemcitabine (Gem) has limited clinical benefits in pancreatic ductal adenocarcinoma (PDAC). The present study investigated combinations of gemcitabine with antiangiogenic agents of various mechanisms for PDAC, including bevacizumab (Bev), sunitinib (Su) and EMAP II. Cell proliferation and protein expression were analyzed by WST-1 assay and Western blotting. In vivo experiments were performed via murine xenografts. Inhibition of in vitro proliferation of AsPC-1 PDAC cells by gemcitabine (10 µM), bevacizumab (1 mg/ml), sunitinib (10 µM) and EMAP (10 µM) was 35, 22, 81 and 6 percent; combination of gemcitabine with bevacizumab, sunitinib or EMAP had no additive effects. In endothelial HUVECs, gemcitabine, bevacizumab, sunitinib and EMAP caused 70, 41, 86 and 67 percent inhibition, while combination of gemcitabine with bevacizumab, sunitinib or EMAP had additive effects. In WI-38 fibroblasts, gemcitabine, bevacizumab, sunitinib and EMAP caused 79, 58, 80 and 29 percent inhibition, with additive effects in combination as well. Net in vivo tumor growth inhibition in gemcitabine, bevacizumab, sunitinib and EMAP monotherapy was 43, 38, 94 and 46 percent; dual combinations of Gem+Bev, Gem+Su and Gem+EMAP led to 69, 99 and 64 percent inhibition. Combinations of more than one antiangiogenic agent with gemcitabine were generally more effective but not superior to Gem+Su. Intratumoral proliferation, apoptosis and microvessel density findings correlated with tumor growth inhibition data. Median animal survival was increased by gemcitabine (26 days) but not by bevacizumab, sunitinib or EMAP monotherapy compared to controls (19 days). Gemcitabine combinations with bevacizumab, sunitinib or EMAP improved survival to similar extent (36 or 37 days). Combinations of gemcitabine with Bev+EMAP (43 days) or with Bev+Su+EMAP (46 days) led to the maximum survival benefit observed. Combination of antiangiogenic agents improves gemcitabine response, with sunitinib inducing the strongest effect. These findings demonstrate advantages of combining multi-targeting agents with standard gemcitabine therapy for PDAC
    corecore