147 research outputs found

    Who Said That? Towards a Machine-Prediction-Based Approach to Tursiops Truncatus Whistle Localization and Attribution in a Reverberant Dolphinarium

    Get PDF
    Dolphin communication research is an active period of growth. Many researchers expect to find significant communicative capacity in dolphins given their known sociality and large and complex brains. Moreover, given dolphins’ known acoustic sensitivity, serving their well-studied echolocation ability, some researchers have speculated that dolphin communication is mediated in large part by a sophisticated “vocal” language. However, evidence supporting this belief is scarce. Among most dolphin species, a particular tonal class of call, termed the whistle, has been identified as socially important. In particular, for the common bottlenose dolphin, Tursiops truncatus – arguably the focal species of most dolphin cognitive and communication research – research has fixated on “signature whistles,” individuallydistinctive whistles that seem to convey an individual’s identity to conspecifics, can be mimicked, and can be modulated under certain circumstances in ways that may or may not be communicative. Apart from signature whistles, most studies of dolphin calls concern group-based repertoires of whistles and other, pulse-form call types. However, studies of individual repertoires of non-signature whistles, and the phenomenon of combined signature and non-signature vocal exchanges among dolphins, are conspicuously rare in the literature, tending to be limited by either extreme subject confinement or sparse attributions of vocalizer identity. Nevertheless, such studies constitute a logical prerequisite to an understanding of the communicative potential of whistles. This absence can be explained by a methodological limitation in the way in which dolphin sounds are recorded. In particular, no established method exists for recording the whistles of an entire social group of dolphins so as to reliably attribute them to their vocalizers. This thesis proposes a dolphinarium-based system for achieving audio recording with whistle attribution, as well as visual behavioral tracking. Towards achieving the proposed system, I present foundational work involving the installation of permanent hydrophone arrays and cameras in a dolphinarium that enforces strict animal safety regulations. Attributing tonal sounds via the process of sound localization – estimation of a sound’s point of origin based on the physical properties of its propagation – in a highly reverberant environment is a notoriously difficult problem, resistant to many conventional signal processing techniques. This thesis will provide evidence of this difficulty, and also a demonstration of a highly e↵ective machine-learning-based solution to the problem. This thesis also provides miscellaneous hardware and the pieces of a computational pipeline towards completion of the full proposed, automated system. Once completed, the proposed system will provide an enormous data stream that will lend itself to large-scale studies of individual repertoires of non-signature whistles and combined signature and non-signature vocal exchanges among an invariant group of socializing dolphins, representing a unique and necessary achievement in dolphin communication research

    Absorption Efficiencies of Forsterite. I: DDA Explorations in Grain Shape and Size

    Get PDF
    We compute the absorption efficiency (Qabs) of forsterite using the discrete dipole approximation (DDA) in order to identify and describe what characteristics of crystal grain shape and size are important to the shape, peak location, and relative strength of spectral features in the 8-40 {\mu}m wavelength range. Using the DDSCAT code, we compute Qabs for non-spherical polyhedral grain shapes with a_eff = 0.1 {\mu}m. The shape characteristics identified are: 1) elongation/reduction along one of three crystallographic axes; 2) asymmetry, such that all three crystallographic axes are of different lengths; and 3) the presence of crystalline faces that are not parallel to a specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids. Elongation/reduction dominates the locations and shapes of spectral features near 10, 11, 16, 23.5, 27, and 33.5 {\mu}m, while asymmetry and tips are secondary shape effects. Increasing grain sizes (0.1-1.0 {\mu}m) shifts the 10, 11 {\mu}m features systematically towards longer wavelengths and relative to the 11 {\mu}m feature increases the strengths and slightly broadens the longer wavelength features. Seven spectral shape classes are established for crystallographic a-, b-, and c-axes and include columnar and platelet shapes plus non-elongated or equant grain shapes. The spectral shape classes and the effects of grain size have practical application in identifying or excluding columnar, platelet or equant forsterite grain shapes in astrophysical environs. Identification of the shape characteristics of forsterite from 8-40 {\mu}m spectra provides a potential means to probe the temperatures at which forsterite formed.Comment: 55 pages, 15 figure

    Reviews

    Get PDF
    Reviews of Understanding Industrial Relations, Catching the Wave: Workplace Reform in Australia, Occupational Health and Safety: Best Manarement Practice, Health and Safety in New Zealand Workplaces, Labour And Emplovment Relations In New Zealand, Emplovment Law Bulletin: Recent Developments in Employment Law

    A late-Holocene multiproxy fire record from a tropical savanna, eastern Arnhem Land, Northern Territory, Australia

    Get PDF
    Fire has a long history in Australia and is a key driver of vegetation dynamics in the tropical savanna ecosystems that cover one quarter of the country. Fire reconstructions are required to understand ecosystem dynamics over the long term but these data are lacking for the extensive savannas of northern Australia. This paper presents a multiproxy palaeofire record for Marura sinkhole in eastern Arnhem Land, Northern Territory, Australia. The record is constructed by combining optical methods (counts and morphology of macroscopic and microscopic charcoal particles) and chemical methods (quantification of abundance and stable isotope composition of pyrogenic carbon by hydrogen pyrolysis). This novel combination of measurements enables the generation of a record of relative fire intensity to investigate the interplay between natural and anthropogenic influences. The Marura palaeofire record comprises three main phases: 4600–2800 cal BP, 2800–900 cal BP and 900 cal BP to present. Highest fire incidence occurs at ~4600–4000 cal BP, coinciding with regional records of high effective precipitation, and all fire proxies decline from that time to the present. 2800–900 cal BP is characterised by variable fire intensities and aligns with archaeological evidence of occupation at nearby Blue Mud Bay. All fire proxies decline significantly after 900 cal BP. The combination of charcoal and pyrogenic carbon measures is a promising proxy for relative fire intensity in sedimentary records and a useful tool for investigating potential anthropogenic fire regimes

    Multiproxy Holocene fire records from the tropical savannas of northern Cape York Peninsula, Queensland, Australia

    Get PDF
    Palaeoecology has demonstrated potential to inform current and future land management by providing long-term baselines for fire regimes, over thousands of years covering past periods of lower/higher rainfall and temperatures. To extend this potential, more work is required for methodological innovation able to generate nuanced, relevant and clearly interpretable results. This paper presents records from Cape York Peninsula, Queensland, Australia, as a case study where fire management is an important but socially complex modern management issue, and where palaeofire records are limited. Two new multiproxy palaeofire records are presented from Sanamere Lagoon (8150-6600 cal BP) and Big Willum Swamp (3900 cal BP to present). These records combine existing methods to investigate fire occurrence, vegetation types, and relative fire intensity. Results presented here demonstrate a diversity of fire histories at different sites across Cape York Peninsula, highlighting the need for finer scale palaeofire research. Future fire management planning on Cape York Peninsula must take into account the thousands of years of active Indigenous management and this understanding can be further informed by palaeoecological research

    DDA Computations of Porous Aggregates with Forsterite Crystals: Effects of Crystal Shape and Crystal Mass Fraction

    Get PDF
    Porous aggregate grains are commonly found in cometary dust samples and are needed to model cometary IR spectral energy distributions (SEDs). Models for thermal emissions from comets require two forms of silicates: amorphous and crystalline. The dominant crystal resonances observed in comet SEDs are from Forsterite (Mg2SiO4). The mass fractions that are crystalline span a large range from 0.0 25 AU at 1E6 yr) by inner disk materials (crystals) are challenged to yield the highend-range of cometary crystal mass fractions. However, in current thermal models, Forsterite crystals are not incorporated into larger aggregate grains but instead only are considered as discrete crystals. A complicating factor is that Forsterite crystals with rectangular shapes better fit the observed spectral resonances in wavelength (11.0-11.15 microns, 16, 19, 23.5, 27, and 33 microns), feature asymmetry and relative height (Lindley et al. 2013) than spherically or elliptically shaped crystals. We present DDA-DDSCAT computations of IR absorptivities (Qabs) of 3 micron-radii porous aggregates with 0.13 < or = fcrystal < or = 0.35 and with polyhedral-shaped Forsterite crystals. We can produce crystal resonances with similar appearance to the observed resonances of comet Hale- Bopp. Also, a lower mass fraction of crystals in aggregates can produce the same spectral contrast as a higher mass fraction of discrete crystals; the 11micron and 23 micron crystalline resonances appear amplified when crystals are incorporated into aggregates composed otherwise of spherically shaped amorphous Fe-Mg olivines and pyroxenes. We show that the optical properties of a porous aggregate is not linear combination of its monomers, so aggregates need to be computed. We discuss the consequence of lowering comet crystal mass fractions by modeling IR SEDs with aggregates with crystals, and the implications for radial transport models of our protoplanetary disk

    Reviews

    Get PDF
    Reviews of Business and New Zealand Society, Women in Trade Unions: Organizing the Unorganized, Labour Law and Industrial Relations in Asia, International and Comparative Industrial Relations: A Study of Industrialised Market Economies, The Challenge of Human Resource Management Directions and Debates in New Zealand, Visions of the Future of Social Justice: Essays on the Occasion of the ILO's 75th Aniversary, Coal, Class and Community: The United Mineworkers of New Zealand, 1880-1960, Higher Productivity and a Better Place to Work - Practical Ideas (or Owners and Managers of Small and Medium-Sized Enterprises, OECD Societies in Transition." The Future of Wo.rk and Leisure

    Constraining Cometary Crystal Shapes from IR Spectral Features

    Get PDF
    A major challenge in deriving the silicate mineralogy of comets is ascertaining how the anisotropic nature of forsterite crystals affects the spectral features' wavelength, relative intensity, and asymmetry. Forsterite features are identified in cometary comae near 10, 11.05-11.2, 16, 19, 23.5, 27.5 and 33 microns [1-10], so accurate models for forsterite's absorption efficiency (Qabs) are a primary requirement to compute IR spectral energy distributions (SEDs, lambdaF lambda vs. lambda) and constrain the silicate mineralogy of comets. Forsterite is an anisotropic crystal, with three crystallographic axes with distinct indices of refraction for the a-, b-, and c-axis. The shape of a forsterite crystal significantly affects its spectral features [13-16]. We need models that account for crystal shape. The IR absorption efficiencies of forsterite are computed using the discrete dipole approximation (DDA) code DDSCAT [11,12]. Starting from a fiducial crystal shape of a cube, we systematically elongate/reduce one of the crystallographic axes. Also, we elongate/reduce one axis while the lengths of the other two axes are slightly asymmetric (0.8:1.2). The most significant grain shape characteristic that affects the crystalline spectral features is the relative lengths of the crystallographic axes. The second significant grain shape characteristic is breaking the symmetry of all three axes [17]. Synthetic spectral energy distributions using seven crystal shape classes [17] are fit to the observed SED of comet C/1995 O1 (Hale-Bopp). The Hale-Bopp crystalline residual better matches equant, b-platelets, c-platelets, and b-columns spectral shape classes, while a-platelets, a-columns and c-columns worsen the spectral fits. Forsterite condensation and partial evaporation experiments demonstrate that environmental temperature and grain shape are connected [18-20]. Thus, grain shape is a potential probe for protoplanetary disk temperatures where the cometary crystalline forsterite formed. The forsterite crystal shapes (equant, b-platelets, c-platelets, b-columns - excluding a- and c-columns) derived from our modeling [17] of comet Hale- Bopp, compared to laboratory synthesis experiments [18], suggests that these crystals are high temperature condensates. By observing and modeling the crystalline features in comet ISON, we may constrain forsterite crystal shape(s) and link to their formation temperature(s) and environment(s)
    • …
    corecore