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Dolphin communication research is an active period of growth. Many researchers

expect to find significant communicative capacity in dolphins given their known sociality

and large and complex brains. Moreover, given dolphins’ known acoustic sensitivity,

serving their well-studied echolocation ability, some researchers have speculated that

dolphin communication is mediated in large part by a sophisticated “vocal” language.

However, evidence supporting this belief is scarce.

Among most dolphin species, a particular tonal class of call, termed the whistle,

has been identified as socially important. In particular, for the common bottlenose

dolphin, Tursiops truncatus – arguably the focal species of most dolphin cognitive and

communication research – research has fixated on “signature whistles,” individually-

distinctive whistles that seem to convey an individual’s identity to conspecifics, can be

mimicked, and can be modulated under certain circumstances in ways that may or may

not be communicative.

Apart from signature whistles, most studies of dolphin calls concern group-based

repertoires of whistles and other, pulse-form call types. However, studies of individual

repertoires of non-signature whistles, and the phenomenon of combined signature and

non-signature vocal exchanges among dolphins, are conspicuously rare in the literature,

tending to be limited by either extreme subject confinement or sparse attributions of

vocalizer identity. Nevertheless, such studies constitute a logical prerequisite to an

understanding of the communicative potential of whistles.

This absence can be explained by a methodological limitation in the way in which

dolphin sounds are recorded. In particular, no established method exists for recording



the whistles of an entire social group of dolphins so as to reliably attribute them to

their vocalizers.

This thesis proposes a dolphinarium-based system for achieving audio recording

with whistle attribution, as well as visual behavioral tracking. Towards achieving the

proposed system, I present foundational work involving the installation of permanent

hydrophone arrays and cameras in a dolphinarium that enforces strict animal safety

regulations.

Attributing tonal sounds via the process of sound localization – estimation of a

sound’s point of origin based on the physical properties of its propagation – in a

highly reverberant environment is a notoriously di�cult problem, resistant to many

conventional signal processing techniques. This thesis will provide evidence of this

di�culty, and also a demonstration of a highly e↵ective machine-learning-based solution

to the problem.

This thesis also provides miscellaneous hardware and the pieces of a computational

pipeline towards completion of the full proposed, automated system.

Once completed, the proposed system will provide an enormous data stream that

will lend itself to large-scale studies of individual repertoires of non-signature whistles

and combined signature and non-signature vocal exchanges among an invariant group

of socializing dolphins, representing a unique and necessary achievement in dolphin

communication research.
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Chapter 1

Introduction

1.1 Humans and Dolphins

Members of the family Delphinidae, in particular those belonging to the common bottlenose

dolphin species (Tursiops truncatus), have been subjects of human curiosity since well before

they ever became subjects of modern science. In ancient Greece (broadly, 800 BC to 600 AD),

naturalists Aristotle and Theophrastus performed and recorded exploratory dissections of

dolphins, while historians Herodotus and Plutarch recounted human interactions with them.

Plutarch noted that dolphins were particularly welcome sights to Greek mariners; dolphins

were said to guard, rescue and lead lost sailors from danger, and in the absence of danger

seemed playful and willing to interact (Plutarch, 1956).

Ostensibly because of encounters like these, the ancient Greek curiosity in dolphins was

accompanied by admiration for them, and by an attribution of dignity normally reserved for

humans – it was sacrilege to kill a dolphin, if not a human slave (Plutarch, 1956). Attesting

to their special status, dolphins are depicted on ancient Greek frescoes and coinage, and are

prominently featured in mythology. In the so-called “dolphin rider” myths, dolphins are given

the honored duty of assisting the human transition between life and death (Beaulieu, 2008).

The reasons for the ancient Greeks’ curiosity and admiration for dolphins are not defini-
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1.1. Humans and Dolphins

tively established among historians, however oft-cited reasons include dolphins’ perceived

friendliness towards humans and, relatedly, their marked human-like social intelligence (Cat-

ton, 1995). That ancient Greek mythology places dolphins first among the sea god Poseidon’s

servants and as his messengers is a provocative hint of the special, communicative bond

envisioned between the species (Oppian, 1928). And the perception of this bond generalizes

beyond the historic Greeks. The Aborigines of Australia and the Maori of New Zealand, for

instance, both characterized dolphins in mythology as capable of providing wise spiritual

counsel to humans; the Maori called dolphins humans of the sea (Reiss, 2012).

More recent and detailed accounts of dolphins have served to maintain and/or enhance the

perception of a kinship between dolphins and humans in the modern day United States rather

than to diminish it. The ancient Greek mariners’ stories of rescues by dolphins have been

corroborated. Around the turn of the 20th century, a Risso’s dolphin dubbed Pelorus Jack

found fame for escorting ships in the vicinity of the perilous French Pass, a channel between

Wellington and Nelson in New Zealand. After being spared by the crew of the schooner

Brindle, he led them among the rocks and currents of the pass, and soon became such a

predictable sight to ships that they would stop and wait for him. Reportedly no shipwrecks

occurred in the more than twenty years he was active (Robbins, 1987). Stories such as this

would be amplified for general consumption in media productions such as the 1960’s television

show Flipper, featuring a highly intelligent dolphin in communion with humans, and arguably

even e↵ect legislation by boosting public support for the Marine Mammal Protection Act of

1972, which marks marine mammals’ receipt of more blanket protections than their terrestrial

cousins.

The ongoing public fascination with dolphins for their perceived humanity has no doubt

motivated and influenced science’s treatment of them in the modern day. One of the most

prominent dolphin biologists of the 20th century, John Lilly, did not hide an anthropomor-

phization of dolphins. Funded by NASA, he and colleagues famously attempted to teach the

dolphin Peter to speak English in a flooded house (Lilly, 1965; Riley, 2014). Lilly would also

2



1.2. Bottlenose Dolphin Intelligence and the Potential for Language

publish a collection of his own books and papers pointedly titled, Lilly on Dolphins – Humans

of the Sea. While Lilly would later be considered extreme in his views on dolphin intelligence

and its equivalence to human’s, his outlook would leave a mark on dolphin cognitive science,

increasing both public and scientific interest in the field. And this thesis undoubtedly inherits

some of John Lilly’s optimism for dolphins’ capacity for communication, as it is based on the

view that natural dolphin vocal communication may be far more complex, if not necessarily

humanlike, than is known at present.

1.2 Bottlenose Dolphin Intelligence and the Potential

for Language

There are neuroanatomical, behavioral, and cognitive studies support the perspective

that dolphins – particularly for the Atlantic bottlenose dolphin, which is the “dolphin” of

this thesis unless otherwise indicated – are intelligent and have the potential for complex

communication. With regards to general intelligence, various neuroanatomical measures used

to predict cognitive abilities of mammals (with variable support and reliability), such as

absolute brain mass, brain-to-body mass ratio, and the encephalization quotient (the ratio of

brain mass to predicted brain mass, given the mammal’s overall size) consistently predict

the Atlantic bottlenose dolphin and other odontocetes to be in the vicinity of primates in

intelligence, sometimes above nonhuman primates (Marino et al., 2006). Another indicator

of intelligence accepted among animal psychologists, the capacity for mirror self-recognition –

the ability of an individual to recognize oneself in a mirror – places the bottlenose dolphin

in an exclusive group with great apes, the Eurasian magpie and some Asiatic elephants

(Gallup Jr, 1970; Plotnik et al., 2006; Reiss and Marino, 2001). Other evidence of dolphins’

general intelligence includes reports of their culturally-transmitted tool use (Krutzen et al.,

2005) and foraging tactics (Sargeant et al., 2005), their capacity for metacognition (Smith,

2010), and their possession of both symbolic declarative knowledge and procedural knowledge

3



1.2. Bottlenose Dolphin Intelligence and the Potential for Language

(Herman, 2010).

As to dolphins’ social intelligence, evidence is again extensive. Bottlenose dolphins live

in a complex social landscape. They live in gender-mixed groups that usually comprise

about 15 individuals but which can range in size from 15 to 100 individuals (Shirihai and

Jarrett, 2006). For males in particular, groups are not organized based on genetic relatedness,

and are not fixed in composition; a single male dolphin may associate with many groups

throughout his life, and a single group may undergo composition changes on a daily or even

hourly basis. This characterizes what has been termed the dolphin fission-fusion society

(Connor et al., 2000). Groups can merge to become first-order, second-order, and third-order

alliances based on complex male relationships – relationships believed to be nontrivial feats of

“social intelligence,” not based on a simple equivalence rule – and male-female relationships,

comprising potentially 400 or more individuals (Connor et al., 2001; Krutzen et al., 2003).

Incidentally but provocatively, the so-called Dunbar number, which puts a theoretical cap on

the number of humans composing a stable social group based on fitting group size to the

average brain size for various primate species (which, in turn, is also proposed to correlate

with general intelligence), is speculated to lie between 150 and 250 (Dunbar, 1992). Dolphins

will engage in cooperative activities such as play and pack hunting, and exhibit non-conceptive

sex behavior as observed in primates (Furuichi et al., 2014; McCowan et al., 2000; Sargeant

et al., 2005).

Given that general intelligence co-occurs with social intelligence in bottlenose dolphins, it

is tempting to speculate that sophisticated communication exists, facilitating higher-level

sharing of information among conspecifics. However, it cannot be presumed that such

communication would be entirely vocal in nature. Bottlenose dolphins have also been shown

to communicate tactiley (Dudzinski et al., 2012) and visually (Herman and Kastelein, 1990),

the latter being consistent with studies showing dolphins possess broad-spectrum vision that

is equipped with adaptations for low-light and in-air object detection (Griebel and Peichl,

2003; Griebel and Schmid, 2002). And while dolphin visual acuity is thought to be limited,

4



1.2. Bottlenose Dolphin Intelligence and the Potential for Language

poorer for instance than the visual acuity of pinnipeds, studies suggest that it is enhanced by

dolphins’ echolocation – a modality that will be discussed more extensively later (Pack and

Herman, 1995).

While we cannot disqualify tactile and visual signals as the potential bases of dolphin

communication, dolphins also possess formidable acoustic machinery that would serve ocean-

based communication well, particularly where touch and vision fails, which is at a distance:

for vision, at distances farther than a few meters, and less as one descends into the light-barren

depths.

Regarding the bottlenose dolphin vocal apparatus, dolphins possess at least two physically

separable mechanisms for producing “vocal” (more properly termed nasal) sounds, one which

predominantly produces tonal sounds (or whistles) in a 3 to 20 kHz frequency range and one

which produces broadband impulses (clicks and bursts) with frequencies spanning between

a few hundred Hertz to over a hundred kiloHertz (Au and Simmons, 2007; Oswald et al.,

2003). Together these mechanisms can be employed, sometimes simultaneously, to produce

highly variable sound trains that researchers argue are theoretically capable of supporting a

language as versatile as a human one (Ridgway et al., 2015). McCowan asked whether Zipf’s

Law, a result from mathematical statistics that observes that a word from a language corpus

possesses a frequency that is inversely proportional to its rank in the frequency table, applies

to dolphin whistles (McCowan et al., 2002). A language corpus’ adherence to Zipf’s law has

been suggested to indicate that it optimizes communicate capacity by not being too repetitive

or too diverse (Zipf, 1949). McCowan found that a corpus of dolphin whistles adhered to

Zipf’s law as well as samples from many human langauges (McCowan et al., 1998a). While

this result must be interpreted carefully because we do not know for certain what features

of whistles are salient to dolphins, and because simulations suggesting adherence to Zipf’s

law is a necessary but not su�cient requirement of language, the result remains provocative

(Suzuki et al., 2005).

Dolphin vocalizations hint at complex communication not only on the basis of their

5



1.3. The Signature Whistle Hypothesis and the State of Dolphin Vocal Communication
Research

attributes as individual, static units: these units also vary and are produced as biphonal

signals that may be indicative of complex communication. Certain bottlenose whistles,

referred to as signature whistles, have been shown to function as unique dolphin self-identifiers

– they will be discussed more extensively later. These signature whistles can be mimicked by

conspecifics, seemingly for the purpose of attracting the attention of individuals (Tyack, 1986).

Bottlenose dolphins can also mimic artificial, whistle-like sounds (Reiss and McCowan, 1993;

Richards et al., 1984). Dolphins can be trained to associate these same artificial sounds with

objects and have been reported to spontaneously combine the sounds to exhibit behavioral

concordance in use (Reiss and McCowan, 1993; Richards et al., 1984). Moreover, dolphins

possess large natural repertoires of sounds, for which ontogeny has been reported and studied

(McCowan and Reiss, 1995b).

I have briefly reviewed why scientists studying bottlenose dolphin vocalizations, particu-

larly the whistles, believe that current research gives us only a small glimpse of richer vocal

communication: dolphins are intelligent both with regards to problem solving and social

coordination, and they command acoustic machinery capable of generating large vocal variety.

Before the aims of this thesis are presented in full, the current state of social bottlenose

dolphin vocalization research will be presented.

1.3 The Signature Whistle Hypothesis and the State

of Dolphin Vocal Communication Research

The first captive Atlantic bottlenose dolphins became available for study in the United

States in the 1940s. Quickly whistles were distinguished from among their other vocalizations,

including “snapping” and “barking” sounds, and were vaguely associated with social expression

(McBride and Herb, 1948). By classifying whistles based on their time-frequency contours as

visualized in sonograms, it was noticed that whistles within and among dolphins are numerous

and varied, and that they might be interpreted as human-like words with individual meaning

6



1.3. The Signature Whistle Hypothesis and the State of Dolphin Vocal Communication
Research

(Dreher, 1961). Melba and David Caldwell were the first researchers to robustly correlate

whistle contour with some external feature (Janik and Sayigh, 2013). The Caldwells recorded

many wild Atlantic bottlenose dolphin vocalizations in isolation, compiling whistle-contour

repertoires for individuals. They noticed that each dolphin seemed to possess a distinct

whistle type, a result that was consistent across many populations (Caldwell and Caldwell,

1965; Caldwell et al., 1990; Sayigh et al., 2007).

As a result of these studies, the Caldwells proposed the signature whistle hypothesis, which

many researchers in the field of Atlantic bottlenose dolphin communication currently accept.

Including the contributions of newer research, the signature whistle hypothesis might be

stated as follows: every bottlenose dolphin possesses an individually distinctive whistle that

it tends to use more than any other whistle, particularly when it is isolated from conspecifics,

and which broadcasts the owner’s identity to conspecifics (Caldwell et al., 1990; Janik and

Sayigh, 2013). The extent to which a dolphin uses its own signature whistle more than other

whistles is dramatic: the signature whistle accounts for over 90% of whistles produced by

a dolphin held in isolation, and 38-70% of whistles produced by a freely swimming, social

dolphin (Caldwell et al., 1990; Janik and Sayigh, 2013; Janik and Slater, 1998; Sayigh et al.,

2007).

The Caldwells’ pioneering research and the introduction of the signature whistle hypothesis

strongly impacted the ensuing decades of bottlenose dolphin communication research. By

isolating dolphins and determining their signature whistles, researchers could rigorously study

how an individual’s whistle changed under di↵erent natural and experimental conditions. In

some cases, researchers could even study how signature whistles changed in social groups,

where the SigID heuristic was employed to identify non-mimicked signature whistles or else

crude sound localization techniques that took statistical advantage of signature whistles’

prevalence in recordings were employed to identify signature whistle vocalizers (Janik and

Sayigh, 2013; Janik et al., 2013). By contrast, other studies recorded and focused on the

overall vocal repertoires and also reported the use of predominant stereotypic whistles by
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Figure 1.1: Melba and David Caldwell’s Signature Whistles A figure from one of

Melba and David Caldwell’s first studies (Vocalization of Naive Captive Dolphins in Small

Groups, 1968) outlining the signature whistle hypothesis. (A)-(E) display the predominant

whistle of five di↵erent dolphins. (F) is a whistle from the vocalizer of (D), interpreted as

a rendition of (D) interrupted by the simultaneous call of a conspecific. In (G) are “chirps

overlaid by pulsed emissions.” In (H) are “burst-pulsed barks.”
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Figure 1.1
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individuals when in temporary isolation and during social interactions and noted these calls

shared the general characteristic of being rise type calls or looped rises (McCowan, 1995;

McCowan and Reiss, 1995a,b, 2001; McCowan et al., 1998b). These studies suggested that,

based on contour uniqueness, aquarium dolphins can possess individual whistles repertoires

containing on-the-order-of-tens of whistles, and, with only a few being unique to individuals

(based on bubble-stream identification, to be discussed), indicated the existence of shared

repertoires. Thus, researchers who did not identify signature whistles were largely limited to

studies of the whistle repertoires of groups.

Despite many research groups’ preoccupation with signature whistles, the head of one

such group, Janik, cautions that signature whistles are not the culmination of communication

research in dolphins, stating that they are simply accessible tools owing to their stability and

dominance (Janik and Sayigh, 2013). He concedes that little is known, for instance, about

non-signature whistles (which include, unsurprisingly, any whistle that is not a signature

whistle). These whistles are scarce, more varied across an individual dolphin’s repertoire,

and may be shared more extensively than signature whistles (Janik and Sayigh, 2013).

The primary reason non-signature whistles have been neglected is undoubtedly because

researchers have lacked a reliable solution to the problem of sound attribution. Due to non-

signature whistles’ variability, crude methods of sound attribution that su�ce for attributing

signature whistles among freely swimming dolphins do not su�ce for non-signature whistles.

Developing a better system of sound attribution to allow for the study of all whistles is

the purpose of this thesis. I believe that with a more reliable system of sound attribution, a

rigorous study of both signature and non-signature whistles might be performed. The field

stands not only to gain an understanding of the individual vocal repertories, functionality,

and development of non-signature whistles, but also a handle on the question of whether

complex vocal exchanges occur among dolphins.
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1.4 Whistle Acoustic Properties, Brief Review of

Click Vocalizations

As was briefly mentioned earlier, whistles are tonal sounds with the majority of their power

concentrated between 3 to 20 kHz (Herzing, 2000; Oswald et al., 2003). By tonal, we mean

that whistles are narrowband, their energy spread over perhaps 200 Hz at any given time.

A whistle can last for a fraction of a second to as long as four seconds, its center frequency

varying continuously, creating the appearance of a worm in time-frequency space (see Figure

1.1). A whistle is said to be looped if it comprises identical elements spaced by less than 0.5

seconds (Esch et al., 2009). Moreover, whistles often consist not only of their lowest-frequency,

typically highest-amplitude time-frequency component (called the fundamental), but of a

stack of near-identical harmonics of frequencies that are integer multiples of the fundamental.

Whistles containing as many as ten harmonics have been reported (Branstetter et al., 2012).

It is well known that the acoustic clicks used by dolphins and other odontocetes are

highly directional, which aids in echolocation (Au et al., 1986). As clicks and whistles both

originate in the nasal passages, some researchers believe that the same anatomical features

that contribute to clicks’ directionality – including a reflective concave skull, reflective cranial

air sacks, and a density graded melon – may contribute meaningfully or incidentally to the

directionality of whistles (Branstetter et al., 2012). While whistle directionality is not well

studied, for a few species of dolphin (including T. truncatus) whistles have been found to be

partially front-directional, with directionality increasing with frequency (and in turn harmonic

level); the di↵erence between “front” and “side” whistle intensity can be about 5 dB in 160

dB for a whistle’s fundamental (Branstetter et al., 2012; Lammers and Au, 2003).

Clicks are broadband pulses: one click typically spans more than 2 kHz and lasts fewer

than 300 microseconds (Tyack and Clark, 2000). A bundle of clicks spaced at intervals of ˜3

or more milliseconds with large, 60-70 kHz bandwidths belongs to a functional sub-class, the

click train, used for echolocation (Au, 2000; Johnson, 1967); when echolocating, a dolphin
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generates a click, analyzes its reflection to recognize objects in the vicinity, and repeats,

usually for the purpose of foraging (Au, 2000). Alternatively, a bundle of clicks spaced at

intervals of ˜0.5 or fewer milliseconds with small, ˜3 kHz bandwidths probably has social

functionality (Herzing, 2000). Lumped together, bursts and click trains have been associated

with emotions such as fear (Caldwell and Caldwell, 1968; Herzing, 2000), consortship (Connor

and Smolker, 1996), and alarm (Caldwell and Caldwell, 1968; Herzing, 2000).

As an aside, note that whistles and clicks are potentially produced by two or more, likely

lateral-cranially segregated vocal apparatuses, as evidence by common bottlenose and other

species of dolphins ability to produce biphonations (Kaplan et al., 2017; Papale et al., 2015).

1.5 Sound Attribution

Sound attribution refers to matching a sound heard or received on some audio device with

its source. Assuming the potential sources to be identical in all characteristics except location,

sound attribution typically involves sound source localization. Sound source localization

ascribes an area in space to a sound or signal based on predictable changes that alter it based on

physical phenomena during its travel from source to sensor location(s) (Neunuebel et al., 2015).

Sound source localization usually involves multiple spatially separated sensors, each receiving

the signal of interest with changes that are unique to the particular source/sensor pair’s

physical relationship; such changes might include amplitude change, frequency composition

change, and particularly phase change and time delay. Assuming the positions of the sensors

are known, a set of source/sensor changes can be used to specify sound source location. There

are many methods for accomplishing this that cannot all be reviewed in this thesis, but the

mathematical details for a relevant subset will be reviewed in upcoming chapters. Following

sound source localization, sound attribution itself will often take visual data into account to

match the spatial output area from localization with an individual source; in other fields,

some clever ways exist for doing this that leverage the known visual positions of potential
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speakers to compensate for poor sound source localization, a point which the work in this

thesis did not reach (Neunuebel et al., 2015; Warren et al., 2018). Sound source localization

and attribution for cetacean calls from unrestrained animals has been attempted before wth

varying degrees of success. Prior to five to ten years ago, I feel these methods fall into roughly

five categories, based on the capabilities of the underlying sensor arrangements.

In the first category are methods that often involve large ships owned by organizations

like NOAA or the US Navy, which pull arrays of three to dozens of hydrophones. These

methods localize sound sources in the open ocean based on the relative time delays of received

signals across sensors. Due to the large distances between the array and potential sources as

compared to the distances among individuals within a social group, as well as a lack of visual

data, these methods are largely limited to semi-blindly attributing sound to widely distant

cetacean groups and/or solitary individuals (Barlow and Taylor, 2005; Watkins and Schevill,

1972; Yack et al., 2013).

In the second category are methods involving large fixed hydrophone arrays, for instance

the US Navy’s SOSUS (sound surveillance system), which was deployed in 1949 in both

Atlantic and Pacific Oceans to monitor Soviet submarines (Ano; Whitman, 2005). As above,

these methods localize sound sources in the open ocean base on the relative time delays

of received signals across sensors. These methods benefit from widely-distributed sensors

(at scales of hundreds and thousands of miles), and enjoy better coverage and localization

performance at distance than the towed array methods, however su↵er from the same large

distances between sensors and sources as compared with within-social-group distances, as well

as a lack of visualization, so are also limited to blindly attributing sound to widely distant

cetacean groups and/or solitary individuals (Cummings and Thompson, 1994; Janik, 2000;

Sta↵ord et al., 1994; Watkins et al., 2000).

In the third category are methods employing portable hydrophone arrays in aquaria or in

the field, often paired with cameras or high-quality observation. As above, these methods

typically (but not always) localize sound sources based on the time delays of received signals
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across sensors, but with the added benefits of the animals’ close proximities to the sensors

(the arrays are opportunistically deployed) and good visual data, these methods can attribute

sound to non-solitary individuals. Such methods have been employed heavily in studying

dolphin echolocation, and to a lesser extent dolphin whistles (Dudzinski et al., 1995; Tyack,

1991; Watkins and Schevill, 1972, 1974; Wisniewska et al., 2015). However, these methods

have still not been employed with great success for studying non-signature whistles or vocal

exchanges. Limitations include their short time of deployment in aquaria or the field and

their tendency to lose accuracy significantly at just a few meters of source-sensor separation,

leading to di�culties acquiring large, longitudinal data sets for dolphins distributed across a

large space (Dudzinski et al., 1995; Tyack, 1991; Watkins and Schevill, 1972).

In the fourth category are methods, similar to the above, employing distributed sensor

arrays (typically separations in excess of 1m) in aquaria or the field. Unlike the methods based

on dense sensor arrays, these methods can be theoretically suited to performing comprehensive

sound attribution for a large (10+ meter) enclosure. However, such methods have not yet

attributed whistles among more than two dolphins/dolphin groups for a permanent population

in a reverberant environment (i.e., a dolphinarium), for a variety of reasons including lack

of sound localization precision and lack of visualization (Freitag and Tyack, 1993; Janik

and Thompson, 2000; López-Rivas and Bazúa-Durán, 2010). Only one such method, using

temporary hardware installed around a relatively non-reverberant lagoon serving as an interim

dolphin holding pen, has successfully performed whistle attribution for a group of more than

two dolphins, achieving 40% attribution over a few hundred whistles (Thomas et al., 2002).

The sound localization system that is the subject of this thesis employs a method belonging

to this fourth category, and it will be considered in more detail in upcoming chapters.

The fifth category consists of a single method of sound attribution that does not involve

sound source localization; it relies on the observation that bottlenose dolphins release bubble

streams concurrent with whistles (Herzing, 1996; McCowan and Reiss, 1995a). While

sometimes this method can achieve sound attribution for individuals in a large enclosure with
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a single hydrophone and suitable visualization, major weaknesses include the observation

that bubble-streams are not always produced when dolphins whistle and therefore are not

su�cient to indicate whistling, and moreover that the association seems biased towards

particular whistle types (Fripp, 2005).

More recently, new methods of sound localization/attribution have been developed in

the form of hydrophone-containing tags that are attached to the dolphins for which sound

attribution is desired (Akamatsu et al., 2000; Tyack, 1985; Watwood et al., 2005). Once

deployed, these tags solve the sound attribution problem for the equipped dolphins, based on

either simple sound source localization from onboard recording devices or the timing of visual

indicators emitted from onboard lights. While powerful, sound attribution methods based on

these devices do have weaknesses. They include the frequent disruption of monitoring given

the tendency of tags to fall o↵ after a few days, that aquarium dolphins must be trained to

wear these tags and that in general their e↵ect on the wearers’ behavior remains unclear, and

that in the wild they are not usually accompanied by visualization – not an impediment to

the attribution itself but to tracking group membership in the wild and finding vocalization

behavioral correlates (van der Hoop et al., 2014).

The proposed method falls into the fourth category, and relies on deploying a distributed

sensor array with accompanying cameras in the Dolphin Discovery pool of the National

Aquarium in Baltimore, Maryland, a contained habitat with an invariable group of seven

dolphins. As the equipment is permanent, we are uniquely situated to obtain data over

months if not years; even with an imperfect solution for sound attribution, we are poised to

acquire enough data, consisting of enough dolphin interactions, to mount a substantial study

of dolphin (non)exchange and individual vocal repertoires.
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1.6 Proposal

I endeavored to design a system that would produce data su�cient for the attribution of

whistles to individual dolphins at Dolphin Discovery of the National Aquarium in Baltimore,

Maryland. Successful sound attribution as we conceived it required data that contained

(1) the locations, in real coordinates, of all dolphins or “potential vocalizers” (i.e., from

camera recordings), and (2) the locations, in real coordinates, of the origin of all vocalizations

(i.e., from hydrophone recordings). Requiring both camera and hydrophone recordings,

whistle attribution would be achieved by matching the two data sets. At the time of writing,

a fully autonomous attribution system has not been completed, however the fundamental

hardware components are in place: several networked cameras, several networked hydrophones,

and infrastructure for consolidating the data on a single computer. In addition, software

for continuously recording synchronous audio and video has been designed, and various

measurements and calibrations necessary for achieving whistle attribution have been made.

Moreover, a strong proof of concept for a machine-learning-based approach for whistle

attribution has been developed. All of these topics will be discussed in subsequent chapters.
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Chapter 2

Dolphin Surveillance System:

Hydrophone Panels

2.1 Pool Overview

The dolphin pool of the Dolphin Discovery exhibit at the National Aquarium, Baltimore

is approximately a cylindrical tank; it is approximately 20 feet deep as measured by plumb

line, and 108-112 feet in diameter as measured by laser rangefinder (Bosch 225 ft. Laser

Measure). The cylindrical pool is partitioned into four sub-pools Figure 2.1. The largest of

the sub-pools, the so-called exhibition pool or EP, is an approximate half-cylinder. The walls

and floors are constructed of thick structural concrete coated with an industrial epoxy except

in several large sections, particularly on the curved wall (which faces the public, which takes

the perspective of Figure 2.1). These sections are composed of 5.25”-thick acrylic coated

with a scratch/environment-proofing film to facilitate viewing. Two of these large sections

occupy the upper third of the pool. Sharing the EP’s flat concrete wall are two support

pools that are nearly quarter-cylinders, denoted SP 1 and SP 2. The walls of these pools are

constructed entirely of epoxy-treated concrete except for one small acrylic viewing window

each, looking into a small central observation room called the pit, into which the EP also has
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a viewing window. Lastly, a cylindrical section with radius somewhat less than the total pool

radius is cut symmetrically from SP1 and SP2; this is the med pool. The med pool has a

depth substantially less than the 20 feet indicated earlier. Around the perimeter of the EP

and SP’s are a number of concrete ledges or slide-outs that serve as dolphin slide areas and

trainer platforms.

Between each pair of sub-pools is a portal approximately 6’ high and 4.25’ wide that can

be blocked by a removable gate, a 1”-thick board punctuated by approximately 1”-diameter

pores. Because the gates are porous, the four sub-pools are always linked by a common water

supply, and are therefore acoustically linked, except under the rare circumstances that the

med pool portals are blocked by solid steel gates for the purpose of dropping the med pool

water line below the level of the other pools.

The purpose of the portal-gate system is to separate the aquarium’s seven dolphins (two

male, five female) for husbandry, an aspect of pool operation that the research group has little

control over. Potential reasons for separating dolphins include the prevention of unwanted

sexual arousal or intercourse, the prevention of aggressive displays, the prevention of the

spread of disease or stress, or in general the prevention of any interaction that the trainers

feel is not optimal to the animals’ collective wellbeing. The distribution of the dolphins

among the pools can change hourly or daily depending on the short-term health/behavioral

assessments as well as the long-term goals of Dolphin Discovery’s medical and training sta↵s.

Long-term goals might include the slow mixing of the male and female dolphins after a long

period of separation, or the introduction of foreign hydrophone panels into the water.

Any attempt at tracking dolphin behavior must cope with the disruptions of natural

behavior resulting from these separations as well as various other acts of husbandry. These

include scheduled changes to the artificial lighting; scheduled interactions with guests (which

do not strictly qualify as husbandry); scheduled feedings and medical procedures; scheduled

training sessions, in which the trainers introduce and reinforce trained behaviors – some of

these trained behaviors inspired by the behavior of wild dolphins, some not – in front of an
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Figure 2.1: Overhead View of Dolphin Discovery Pool, National Aquarium, Bal-

timore The largest sub-pool, closest to the camera, is the EP. The two next-largest sub-pools,

from left to right, are SP1 and SP2. The smallest, farthest sub-pool, barely visible, is the

med pool. Note the portals and gates between each pair of sub-pools.
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audience; scheduled enrichment sessions, in which the trainers expose the dolphins to novel

sensory stimuli, typically in the form of colorful visual and auditory toys displayed on the

acrylic window; and scheduled access to pool toys – non-realistic items such as pool noodles,

rings. In general, any attempt at tracking the behavior of the Dolphin Discovery animals

must accept that the dolphins’ behavioral patterns and environment are tightly controlled by

the trainers and, as a consequence, tend to be neither naturalistic nor uninterrupted.

The proposed surveillance system was originally intended to provide continuous audio

and visual tracking of all Dolphin Discovery’s seven dolphins. Such a system would require

multiple hydrophones (four or more) placed in each of the four sub-pools, all hard-networked;

additionally it would require multiple cameras achieving three-dimensional coverage of all

sub-pools, all hard-networked as well. Owing to time and cost limitations, and due to a lack

of overhead access for placing cameras around the rear pools and a general lack of accessibility

for placing hydrophones (discussed in the next section), we limited our surveillance to the

EP, employing a smaller system. Together with the husbandry considerations just discussed,

this decision reduced our theoretical ability to track uninterrupted dolphin interactions, in

that continuous tracking would necessarily end for any dolphin moving from the EP to one

of the SP’s.

Another drawback of the EP-limited hardware setup is the potential for whistle misat-

tribution resulting from hearing but not seeing dolphins residing in the SP’s. A successful

software tracking system for the EP dolphins must not misattribute whistles from the SP’s

to dolphins visualized in the EP. To wit, this might be accomplished by excluding whistles

using an amplitude thresholding based on comparing separate sets of whistles taken from

inside and outside the EP, or by using a more sophisticated subroutine – potentially also

based on a training set – drawing from the sound attribution/localization software itself. In

any case, at present the system would not permit such distinctions.

In the next section, I will review the design considerations and basic design of the

hydrophone component of the system.
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2.2 Hydrophone Placement and General Design

Considerations

While naively my task was to place hydrophone arrays around the EP in such a way

as to optimize the performance of a sound localization algorithm, constrained only by pool

geometry, in practice hydrophone array placement and design was constrained and dictated

primarily by aquarium construction, aesthetic, and husbandry rules and considerations, and

thriftiness.

As outlined in the previous section, the EP, the sub-pool in which we sought to achieve

sound localization/attribution, is approximately a half-cylindrical tank measuring about 20’

deep from the water line and about 54-56’ in radius.

Hydrophone placement solutions that required exclusion from consideration included all

those requiring drainage of the pool, drilling into or around the pool, and installing visible,

irremovable fixtures in or around the pool. Draining the pool would require an excessive

amount of aquarium labor (namely, spraying pool water into the harbor and refilling), drilling

into the dolphin tank would to be too disruptive to its acoustically sensitive residents (and

underwater drilling would likely require pool draining to prevent dust from contaminating

the water), and most irremovable attachments that might be installed without draining or

drilling could still be deemed a threat to animal husbandry or pool aesthetics. Note that

these operations would not only be unacceptable for installing whatever assembly housed the

hydrophones themselves, but for installing protections for the hydrophones’ cables, which

would necessarily run a distance between the hydrophones and the water surface.

The above considerations implied that our placement solution would involve a rigid

assembly, or array, of hydrophones, secured to a preexisting fixture outside the pool. This

meant that we could not place hydrophones on the flat wall of the EP. The flat wall of the

EP is hidden by a concrete overhang that serves as a path for the training sta↵ for walking,

manipulating the gates in the EP/SP portals, and making presentations, so attaching a rigid
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assembly to a preexisting fixture outside the pool in this area would likely pose a tripping

risk to the trainers. Moreover, installation of hydrophones on this wall would likely create

related safety problems in routing hydrophone cables to the perimeter of the pool, where

audio interfaces could safely be installed.

The placement zone for the hydrophones was therefore limited to the curved section of

the EP wall, including the central concrete slide-out area and and the two long stretches of

acrylic wall. The oblong concrete sections abutting the central concrete slide-out (which itself

was not a placement option for the same reason as the flat wall slide-outs) were determined

to be unsuitable due to noise from pool outflow gratings, and so we would place our rigid

hydrophone arrays along the two stretches of acrylic wall.

Proceeding further in the design would require deciding a method of sound source

localization, which would dictate the minimum number of hydrophone arrays and hydrophones

per panel. The methods available to us properly belong to the field of passive acoustic

monitoring (Zimmer, 2011). Using standard hydrophones for detecting signals of unknown

source frequency composition and intensity, the most valuable information available to us for

the purpose of sound source localization was believed to be the di↵erential transit times of

the whistles to the hydrophones; thus, the methods available to us more specifically belong to

the field of time delay estimation (or TDE ) (Zimmer, 2011). TDE methods of sound source

localization are not universally classified, however I roughly break them down into the classes

of beamforming, time-of-arrival, and time-di↵erence-of-arrival methods.

Beamforming is a well established and deep field of study and a full review is beyond

the scope of this thesis, however one of the simpler versions, the delay-and-sum method,

will be presented here for illustrative purposes. In short, beamforming involves an array of

sensors, typically ten to hundreds, placed at close distances from one another – less than half

of the source wavelength – in a regular pattern (lines, rectangular grids, and concentric circles

are common choices) chosen based on problem properties (Van Veen and Buckley, 1998).

In the delay-and-sum method, the signals from the various sensors are all simply summed
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together, and a final output signal is produced (Greensted, 2012; Van Veen and Buckley,

1998). Because the impinging source sound wave (which we normally assume to be planar,

i.e., in a far-field approximation) reaches the di↵erent sensors at di↵erent times depending on

the array geometry and on the source position, summation maxima and minima resulting

from interference will occur for di↵erent array geometries and source positions. For a fixed

array geometry, the maxima and minima depend entirely on the source position, and an array

geometry can be engineered to favor signal maximization for an arbitrary source position.

This becomes useful for sound source localization with the addition of beamsteering. With

beamsteering, the array geometry is physically or digitally altered to change the favored

source position in a predictable way. In delay-and-sum, the input signals are digitally delayed

(Greensted, 2012). Figure 2.2 depicts delay-and-sum beamforming and beamsteering.

Sound localization can theoretically be achieved with beamsteering by recording a sound

of interest from all sensors and performing a post-hoc beamsteering across a suspect space

searching for maxima. However, notable drawbacks of this approach include the requirement

of a large number of sensors confined to one location, the requirement of post-hoc data analysis

(for the tracking of sparse source signals), the requirement of regular precise hydrophone

calibrations, and known di�culties locating sources in highly reverberant environments due

to the presence of erroneous maxima due to multipath interference (Di Claudio and Parisi,

2003). The last drawback is most significant, as will be detailed in subsequent chapters.

While a sophisticated method of sound localization involving two beamforming arrays to

reduce erroneous maxima might have been implemented, we thought this method to be

cost-prohibitive. Moreover, beamforming is a particularly dense and sometimes esoteric field

of study and, lacking any available expertise or opportunity for rigorous trial-and-error, the

risk of investing in a suboptimal array that would not be as e↵ective as a suboptimal setup

designed to implement a time-of-arrival or time-di↵erence-of-arrival method seemed high.

Ultimately, we decided against a beamforming approach to sound localization.

The next class of algorithms, time-of-arrival (TOA), work from an explicit knowledge of the
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2.2. Hydrophone Placement and General Design Considerations

Figure 2.2: Depiction of Beamforming and Beamsteering A three-sensor beamform-

ing array with a digital steering stage impinged upon by plane waves from two locations is

depicted. The plane wave from neither location generates a maximum under a simple sum,

but with digital steering, the plane wave from the first location generates a maximum under

summation. From (Greensted, 2012).

time it takes the signal to reach each sensor in the array (Li et al., 2016). For a given speed of

sound, through simple multiplication the times of arrival can be converted into direction-blind

estimates of distance, one for each sensor, and so the source localization problem is reduced

to one of finding the ideal intersection of spheres. Unfortunately, knowledge of arrival times

implies knowledge of the time at which the signal is generated, which in our case we do not

possess. Therefore, time-of-arrival algorithms can be trivially disregarded from consideration

for our problem.

Thus, mainly by process of elimination, we sought to design a sound localization system

suited to time-di↵erence-of-arrival (or TDOA) algorithms. I will discuss the topic of the
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TDOA approach now insofar as it informs our hydrophone array geometry – refer to Section

6.2 for mathematical details of the chosen approach. In general, TDOA algorithms are based

on the time it takes a signal to reach one sensor relative to another sensor, across every sensor

pair. While in the conventional TOA method every hydrophone localizes the source to the

surface of a sphere, in the conventional TDOA method every hydrophone pair localizes the

source to a hyperboloid. In one version of the TDOA method, the time delays are used to

determine direction of arrival (or DOA), forming lines or cones from which the source point

is localized. This is a version we ultimately did not consider owing to an inability to reliably

determine time delays from closely adjacent pairs of hydrophones in our final hydrophone

array.

I will briefly review the mathematics of the standard TDOA method and describe how it

motivates the decision of an array geometry, following the abstract treatment for 2 dimensions

of Isaacs et al. (2009). The problem will be revisited more practically in Section 6.2.

Given a sound source point s 2 R2 and M hydrophones h := [h1,h2, ...,hM ] 2 R2⇥M ,

we consider a sound emanating from s at some time t
0

with speed v. We seek to solve for

s starting from the time of arrivals to the hydrophones, t̂
i

. The noisy time measurement

of hydrophone hi, assumed to su↵er from a zero-mean, �2-variance Gaussian error (an

idealization) is:

t̂
i

= t
0

+
d
i

(s,h)

v
+ ✏

i

, (2.1)

where,

d
i

(s,h) := ||s� hi||, i = 1, ...,M (2.2)

is the source-hydrophone distance. We know from our earlier discussion of the TOA method

of sound localization that the onset time, t
0

, is unknown, and so we eliminate it by subtracting

time-of-arrivals, in the defining operation of the TDOA set of methods:

t̂
ij

:= t̂
i

� t̂
j

=
d
i

(s,h)

v
+ ✏

ij

, (2.3)
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where

d
ij

(s,h) := d
i

(s,h)� d
j

(s,h) (2.4)

is a di↵erence of source-hydrophone distances, and ✏
ij

is a subtraction of two Gaussian, zero-

mean, �2-variance random variables possessing zero mean and 2�2 variance. The treatment of

Isaacs et al. (2009) states that, without loss of relevant information, we can limit our attention

to the time-of-arrivals taken with respect to the first, so-called reference hydrophone (we

note that, in practice, placing such importance on the reliability of a single hydrophone over

the others is inappropriate). Thus, we can summarize the variables of interest in (M � 1)⇥ 1

vectors:

t̂(s,h) := [t̂
i1

](i=2,...,M) (2.5)

d(s,h) := [d
i1

](i=2,...,M) (2.6)

✏ := [✏
i1

](i=2,...,M) (2.7)

The TDOA vector can be shown to possess mean and covariance:

t(s,h) := E[t̂] =
d(s,h)

v
(2.8)

Q := E[(t̂� t)(t̂� t)T ] = �2[I + 11T ] (2.9)

where 1 := [1 1 ... 1]T . Our estimate of the sound source point, s, is in statistics called

an estimator of an estimate, which in this case is the TDOA vector t̂ and its constituents. As

such, it is subject to the Crameŕ-Rao bound, a lower bound on the variance of an estimator.

An estimator that minimizes the lower bound of its variance is statistically optimal, and so

we seek to minimize the Crameŕ-Rao bound. The Crameŕ-Rao bound states that, for an

unbiased estimator (one whose expected value of its di↵erence from its expected value is zero)

✓̂ of unknown deterministic parameter and estimate ✓, distributed according to a probability

density function f(x; ✓) based on observed measurements x, the following holds:

var(✓̂) � 1

I(✓)
(2.10)
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where I(✓) is the Fisher information. Very briefly stated, the Fisher information tells us the

amount of information about parameter ✓ that the measurements x contain. Minimizing the

Crameŕ-Rao bound or maximizing the Fisher information is the basis of many researchers’

attempts to optimize the TDOA-based source location estimator for various parameters, in

particular sensor geometry. In two dimensions, the Fisher information for the TDOA-based

source location estimator has been derived by Chan and Ho (1994), assuming our noise vector

✏ is independent of s:

I(s,h) =
G

T

Q

�1
G

v2
(2.11)

where Q is given by (2.9) and

G :=

2

66664

g

T

2 � g

T

1

...

g

T

M

� g

T

1

3

77775

(M�1⇥2)

(2.12)

with

g

i

:=
s� h

i

||s� h

i

|| (2.13)

Using this result, Isaacs et al. (2009) look for sensor geometries that minimize the Crameŕ-Rao

bound for a source point located somewhere inside a circle with radius r1, chosen from a

uniform distribution. The M sensors are limited to lie inside an annulus with r1  r  r2.

They find that an optimal configuration is for the M sensors is to remain maximally distant

from the source circle, on the circle with radius r2, with angles from the x-axis given by

�
j

� �
i

=
2⇡

M
j = i+ 1 (2.14)

for each (i, j) pair. In words, the sensors are distributed in a splay configuration, with equal

spacing along the perimeter of the circle r2 between each sensor. This is the fundamental

result that inspires the placement of our hydrophones. While it is not directly applicable,

pertaining to two dimensions with source locations limited to a circle rather than half-circle,

work done for 3-dimensional geometries for a known source point (a weaker problem setup)
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also suggest that spacing sensors in a symmetric fashion around a source point such that

the source-sensor direction vectors are well distributed often leads to an optimal solution

(Meng et al., 2012; Yang, 2007). While it remains an open project to rigorously derive the

optimal sensor geometry for our geometry, we felt that tentatively proceeding with a splay

configuration was reasonable, especially given that hydrophone arrays were to be moveable.

We therefore endeavored to space as many hydrophones as possible equally along the EP’s

round acrylic wall. We hoped to place the sensors at at least two distinct depths, following

same line of reasoning of maximizing the spread of source-sensor direction vectors, but at the

time of writing this has not yet been achieved.

After a long process of habituating dolphins to the presence of each new hydrophone array,

discussed in the next section, as well as concerns that the hydrophones would be unsightly

and/or distracting to the public, the aquarium allowed us to install four hydrophone arrays –

more arrays might have been possible were we able to present a strong argument that four

was insu�cient. Primarily for redundancy, but also to potentially accommodate a future

partial beamforming approach to sound source localization to bolster the TDOA approach,

we placed four hydrophones in each array. See Figure 2.3. The specifics of the array design

will be discussed in a forthcoming section.

2.3 Hydrophone Panel Installation, Dolphin

Habituation

We eventually designed and built two distinct generations of hydrophone arrays, denoted

Mark 1 and Mark 2. One of these sets is semi-permanently installed in the EP, representing

the culmination of several dozen planned and unplanned installations and removals spread

over two years, from July 2015 to June 2017. The many installations and removals of the

hydrophone arrays was required by the aquarium’s medical sta↵, reasoning that they would

reduce the dolphins’ peak stress levels during introduction. The hydrophone arrays could be
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2.3. Hydrophone Panel Installation, Dolphin Habituation

Figure 2.3: Proposed Array Placement Cartoon depiction of pool as seen from above.

Red dots indicate approximate array placement.

potential stressors as they were to be new additions to what is otherwise a mostly barren

pool and had to be resistant to dolphin tampering.

Even though the National Aquarium dolphins did not have their cortisol levels checked

regularly during the array introduction, the sta↵ did look for evidence of stress through

behavioral indicators. General stress indicators included returning fish, aggression, and

unresponsiveness during training sessions, and array-directed indicators included tail-fluking,

ramming, and avoidance. The dolphins’ reactions to the early array installations convinced

the sta↵ that stress-reducing protocols that allowed the dolphins to habituate to the individual

hydrophone arrays must be created, and these changed over time. The reasoning of the

sta↵ was that the onset of chronic stress could be avoided by exposing the dolphins to the

hydrophone arrays individually for slowly increasing durations. Thus, the strategy involved

installing one array in the pool for a few hours for several days, positively reinforcing the
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2.3. Hydrophone Panel Installation, Dolphin Habituation

dolphins with fish in its vicinity, “permanently” installing the array, then introducing the

next array similarly. Below is good representation of the protocol that we attempted to

follow:

With a minimum of four days between steps for evaluation:

1. Start with 2 hydrophones in 3-4 hours per day

2. 2 hydrophones in 6 hours per day

3. 2 hydrophones in overnight and watch 4 nights

4. 3rd hydrophone in 3-4 hours per day

5. 3rd hydrophone in 6 hours per day

6. 3 hydrophones in overnight and watch 4 nights

7. 4th hydrophone in 3-4 hours per day

8. 4th hydrophone in 6 hours per day

9. 4 hydrophones in overnight and watch 4 nights

10. All 4 hydrophones in permanently

A process somewhat like this was repeated and disrupted multiple times before the Mk. II

hydrophone panels were permanently installed, in June 2017. During the final habituation

period which occurred over three months our research team and the NA training sta↵

conducted systematic behavioral observations. Daily observations were conducted of the

dolphins’ behavior toward or in the proximity of the hydrophones by trainers from 7am -6 pm

daily and our research team monitored behavior from 6pm to 7am. The final protocol stated

that the trainers and/or researchers responsible for evaluating the dolphins’ reactions to the
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hydrophone panels were to score for the following behaviors: (1) head-butts to the panels,

(2) tail-flukes directed towards the panels, and (3) general avoidance (left to the observer’s

discretion to define). Daytime observations were conducted by National Aquarium trainers

and nighttime observations by myself and members of the Magnasco-Reiss research team;

initially all observations were conducted in person (from the audience area, from the sound

booth at the top of the audience area, and/or the pool “pit”), later nighttime observations

were conducted from NYC using remotely accessed real-time surveillance video feed. During

the final installations of the first two panels, only a few solitary, sporadic instances of any

of the three behavioral indicators of stress were noted, in the first three of eight days of

observation. The main behavior observed was genital rubbing on the arrays.

2.4 The Critical Element: the Hydrophone

The critical element of our hydrophone array is the single hydrophone. A hydrophone is

essentially a microphone manufactured with an appropriate acoustic impedance – a measure

of the amount of sound pressure generated by a given acoustic flow, which must be matched

to a medium’s properties to maximize power transfer – to receive sound underwater. It

employs a piezo-electric transducer to convert the mechanical energy of the incoming sound

into an analog current. Depending primarily on the properties of the piezo-electric transducer,

the sound energy will be more or less e↵ectively converted into electrical energy depending

on the sound’s frequency and its angle of approach to the transducer. Respecting financial

and engineering limitations, it was important that we choose a hydrophone well suited to the

frequencies of interest, minimally the 3-20 kHz range of the bottlenose dolphin whistle, and

source locations of interest, lying between -90 and +90 degrees based on an x-axis projecting

from the“face” of a forward-facing hydrophone.

For cost and acoustic properties, we chose the SQ-26-08 hydrophone from Cetacean

Research Technology, whose frequency response plots are shown in Figure 2.4 and Figure 2.5.
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Figure 2.4: Frequency Response of SQ-26-07 Hydrophone Pressure sensitivity of SQ-

26-07 hydrophone at frequencies between 10 Hz and 50 kHz at hydrophone face, measured by

manufacturer. Data was communicated to be representative of the the SQ-26-08 hydrophone.

Plot courtesy of Joe Olsen from Cetacean Research Technology.
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Figure 2.5: Vertical Sensitivity of SQ-26-12 Hydrophone at 10 kHz Pressure sensi-

tivity of SQ-26-12 hydrophone at 10 kHz at di↵erent angles – with the x-axis pointing along

the hydrophone body towards the face, y-axis pointing away from the body horizontally, and

z-axis pointing away from the body vertically, angles are in the XZ plane with 0 degrees at

the hydrophone face – measured by Sensor Technology Limited. Data was communicated to

be representative of the SQ-26-08 hydrophone. Plot courtesy of Joe Olsen from Cetacean

Technology.
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As seen in Figure 2.4, we see that there is no more than a 1 dB fluctuation in sensitivity in

our frequency range of interest. This is considered to be a “flat” frequency response, meaning

that most users would approximate the relative power at di↵erent frequencies of a signal to be

more a function of the sound source and propagation than hydrophone properties. Of course,

the validity of this approximation depends on the application. During design we tentatively

assumed this approximation to be valid for our purposes: if we eventually had reason to

believe the frequency response was insu�ciently flat, we could potentially, artificially flatten

it further by adjusting the gain of our signals in the Fourier domain with the inverse of Figure

2.4.

As seen in Figure 2.5, we see a more significant 4 dB fluctuation in sensitivity between

0 and +/-90 degrees from the hydrophone face for a 10 kHz sound. Even so, in general

the cylindrical transducer contained in sensors like the SQ-28-08 are said to produce an

e↵ectively “omnidirectional” response. Because the manufacturer suggested the hydrophone

was su�ciently omnidirectional for our purposes, and because the more omnidirectional,

spherical-transducer-containing hydrophones were both financially prohibitive and more

di�cult to protect from dolphin tampering, we settled for the SQ-28-08.

In both Mk. I and Mk. II versions of our hydrophone arrays, we embedded the hydrophones

in small acrylic and later PTFE (Teflon) near-parabolic dishes (shape constrained by mill

cutter availability) – see Figure 2.6 – both for protection from dolphin tampering and to

potentially increase hydrophone sensitivity at greater angles from the face. We did not

possess a su�ciently non-reverberant testing environment to rigorously produce a new plot

like Figure 2.5 for the embedded hydrophone, however we we did qualitatively ensure that

the dishes did not block signals (ratios of total of spectral power from glancing and direct

signals were consistently above 0.5).
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Figure 2.6: Hydrophone Insert Selection from a mechanical drawing for the Mk. II

Hydrophone Array’s hydrophone insert. Note the near-parabolic opening. The insert is itself

held in place in the hydrophone panel and holds the hydrophone in place via two titanium

set screws threaded through the panel and pressing into a rubber (EPDM)-stu↵ed clearance

hole.
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2.5. Hydrophone Array Mk. I

2.5 Hydrophone Array Mk. I

Recall that we determined that all arrays would be placed along the curved (radius of

curvature 54-56’), 5.25”-thick acrylic sections of the EP wall, which is topped by a 2.25”-high

lip extending 4” into the pool and 2.75” out of the pool. It was quickly decided that the

only safe, versatile rigid attachment point for a hydrophone array was this lip, thus the

hydrophone array was modeled as a “hanger” that rigidly attaches to this lip. The overall

structure of the hydrophone array is depicted in Figure 2.7.

I will discuss the major pieces in turn together with the relevant design considerations.

Aside from the consideration of corrosion resistance, given that dolphins live in 35 ppt salt-

water, the major consideration for the Mk I. Hydrophone Array was its robustness to dolphin

attack. Prior to the design process, the research team was informed by numerous aquarium

o�cials of the aquariums’ dolphins curiosity and “Vandal-like” qualities. One employee,

Mark Turner, relayed two stories to this e↵ect, one detailing the dolphins’ destruction of

a permanent, PVC hydrophone holder, and another detailing how the dolphins repeatedly

rammed a small, dolphin-controlled submarine into a wall until destroyed.

Two C-channel brackets together with the plate lying atop the pool lip constitute the

main attachment mechanism of the array. Large-gauge socket cap screws go through the

brackets from the top and screw into the plate beneath; importantly, these screws go through

slots in the brackets, allowing the brackets to slide along the plate and squeeze the pool

lip before the screws are tightened. Given the pool radius (˜54’) and the bracket length

(20”) the wall curvature has a negligible e↵ect on the squeeze – the bracket length and pool

curvature di↵er by approximately 1 part in 5000 – particularly given that the brackets are

often installed atop adhesive protectors that can compress. To further ensure the tightness of

the bracket assembly, three large-gauge, winged screws (manipulated by a diver) enter the

bottom of the brackets and bite the bottom of the wall’s lip.

To curb corrosion, the top plate was machined out of marine-grade 316 stainless steel, a

di�cult task requiring our primary machinist, Vadim Sherman, to use hard carbide tooling.
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Heavily concerned with structural strength and the brackets’ inability to splay over time, but

unable to find appropriate marine-grade steel for them, the brackets were machined from

wide carbon steel channels. As carbon steel is not corrosion resistant, I painted them with

polyurethane.

Extending down from the bottom of the pool-side bracket are two rectangular support

rods, for connecting the hydrophone panel with the bracket assembly; between the bracket

and the support rods is a rectangular adaptor piece with counterbored holes to hide the

heads of the screws entering the rods as well as those entering the bracket. The bracket

assembly was designed so that the rods extend from its center of gravity, to avoid torque on

the pool lip. Moreover, I was concerned that the subtle curvature of the pool together with

the rectangular walls presented a danger to the pool’s integrity were the dolphins to ram the

array: potentially the force would be concentrated on the pool wall along the outer edges

of the rods. Consequently, I machined several counterbored holes along the lengths of the

support rods to house nylon cushions. Also with regards to safety, the support rods were

designed to be six feet, which, as cantilevers, I calculated would only allow for an inch or

two of splay from the wall; for fear of the assembly losing too much of its rigidity (a danger

to its structural integrity, to the dolphins, and to audio quality) this was the longest I felt

comfortable designing them to be, though for the quality of sound localization I would have

liked to have made them longer.

Originally, these rods were machined out of 316 stainless steel for strength and corrosion

resistance, but due to concerns about the e↵ects of the assembly’s weight (217 pounds

out-of-water and 187 pounds in-water) on the ease of installation and removal they were again

machined out of fiber-reinforced fiberglass (FRP), reducing the total weight by approximately

30 pounds.

Between the two support rods is a hollow 6061 structural aluminum pole for safely

conveying four hydrophone cables from the hydrophone panel to the surface. To prevent the

pole from applying torque to its attachment point on the panel should it be yanked by a
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dolphin, it is held in place by an acrylic cross-piece bolted to the support rods. Note that

6061 aluminum tends to corrode in saltwater and so the pipe was fitted with threaded holes

to accept an aluminum sacrificial anode, which must be replaced every few months.

Finally, at the bottom of the array is the sensor-containing hydrophone panel – seen in

Figure 2.9 – the piece that the rest of the hydrophone assembly is designed to hold rigidly

against the EP wall. The main function of the panel itself is to, without impairing audio

quality, prevent its four hydrophones from being accessed by dolphins. Therefore, the panel

was machined by Vadim out of a single piece of acrylic, and encases much of the body of

the hydrophones, leaving the transducers mostly exposed. The panel’s backside possesses

channels for conveying the cables from the four hydrophones to the entrance of the cable

pole. The panel is attached to the support rods with large-gauge socket cap screws, and to

the cable rod with two smaller screws.

Even after substitution of fiberglass-reinforced plastic for steel in the support rods, the

Mk. 1 Hydrophone Array is quite heavy: 187 pounds out-of-water. To reduce its e↵ective

weight, I developed a fast and safe process for assembling parts of the array on the pool lip

itself, which nevertheless involved two people outside the water and one scuba diver relying

heavily on a buoyancy control device (BCD). The Mk. I’s weight is one of several problems

that would be addressed during development of the Mk. II.

2.6 Hydrophone Array Mk. II

We underwent the earlier-described process for habituating the National Aquarium’s

dolphins to the presence of the Mk. 1 Hydrophone Arrays. The arrays proved durable,

withstanding not only dolphins and corrosion (though not entirely – explained below) but

repeated installations, and after several months two of the four planned arrays had been

“permanently” installed. However, one afternoon I received a phone call from the aquarium’s

head trainer: after investigating an array for some time, one curious female dolphin, Spirit,
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had learned how to wedge her rostrum between the bottom panel and the pool wall. One of

the male dolphins seemed to be picking up the technique. The Mk. I Arrays needed to be

removed immediately to prevent potential injury to the dolphins.

Some time before this phone call I noticed the dolphins were interested in and successful

at making use of the calculated one or two inches of splay to pry the bottom panel from

the wall, and so I recorded their e↵orts while pondering solutions. Analysis of the footage

indicated that slightly loosened screws had likely made the narrow adaptor piece (which

connects the pool-side C-bracket and the support rods) susceptible to rotation, causing more

splay and less restoring torque between panel and wall. Perhaps the Mk. I Hydrophone

Array could be saved with the design of a wider adaptor and the use of a stronger threadlock,

adhesive that fills space between screws and their holes and reduces slippage. However, I

became concerned that the original cantilever predictions, which predict support rods of any

material would weaken and splay with distance from the attachment site, did not adequately

account for dolphin strength and the e↵ect of transient water pressure gradients that could

increase splay. Without reducing the length of the support rods, which was not a preferred

solution for sound localization, a total overhaul of the hydrophone array was necessary.

Other problems with the Mk. I Hydrophone Array had surfaced that also motivated

a redesign. First, the polyurethane coating on the carbon-steel C-brackets for preventing

corrosion was beginning to chip; gradually corrosion of the carbon steel became visible, to

the distress of the aquarium’s exhibit sta↵. The aquarium’s exhibit sta↵ also voiced concern

regarding the long-term potential for corrosion of even marine-grade stainless steel, as well

as the array’s general color scheme and its window-obstructing 20” width. I also hoped to

reinforce certain pieces spread the four hydrophones over at least two di↵erent heights to

improve the quality of sound localization. I will speak about the changes in turn. The whole

assembly is shown in Figure 2.9.

The two C-channel brackets together with the plate lying atop the pool lip remain the

same in principle and general design as in the Mk. I, apart from being reduced in width
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(the whole assembly is reduced in width by 70%). A significant change is the material. To

reduce the weight of the assembly and eliminate the need for a polyurethane coating, the

marine stainless steel and carbon steel were replaced with structural 6061 aluminum; with the

bottom panel fixed (to be discussed), calculations suggested that aluminum brackets made

from solid 0.5”-thick aluminum would not splay. Moreover, to protect the aluminum from

corrosion and avoid the need for sacrificial anodes, I sent the pieces (and all the aluminum

pieces mentioned subsequently) for Type III (hardcoat) anodization. This process involves

the aluminum piece being placed in a sulfuric acid bath to which a current is applied. The

surface of the aluminum exposed to the bath is oxidized, creating an outer layer of aluminum

oxide (rust). The 0.002” aluminum oxide layer is harder than the underlying aluminum (and

is even harder than tool steel), does not chip, is electrically insulated, and protects the inner

aluminum from corrosion.

The adaptor joining the pool-side bracket and the support rods grew in width as planned,

to prevent rotation of the array around it. Two large holes were added to accommodate

thumb-screws that enter the pool-side bracket and bite the pool lip, and one added to pass

hydrophone cables. The adaptor was also modified to accommodate two new pieces, dubbed

buttresses, which flank the support rods and fix them with horizontal bolts, and are secured

to the adaptor above and the acrylic cross-piece below; apart from reinforcing the support

rods’ attachment to the adaptor, the buttresses are wide and also help to prevent rotation of

of the assembly below the front bracket. The adaptor and buttresses are anodized aluminum.

The support rods are essentially unchanged apart from being one foot longer and attached

to the buttresses. Instead of nylon cushions, which were degrading in the Mk. I, the support

rods have plastic acetal foots atop rubber washers hidden in the counterbored holes. Also

of note are four small holes that were added to accept a so called mini-panel, a reduced

version of the bottom panel meant to allow two of the array’s four hydrophones to be moved

approximately four feet up. Due to financial constraints these could not be immediately built,

impacting sound localization along the Z axis.
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The cable pole is anodized and longer, and has additional attachments to the acrylic

cross-piece and the bottom panel as a result of two approximately half-cylindrical, anodized

aluminum collars; one can be seen in Figure 2.10. It has also been modified with a window

to accommodate the mini-panel in the future.

The face of the bottom panel, seen in Figure 2.10, has been rotated by 90 degrees

consistent with the array’s width reduction. Its hydrophone inserts are constructed of

chemically-resistant, low-friction PTFE (Teflon). Two acetal plastic arms are attached to the

left and right hand side of the panel and hold the solution to the cantilever problem, marine

suction cleats (Darby 6.5in Suction Cleat).

As their name implies, these cleats are designed to be used as underwater attachment

points for boats. One cleat is rated to resist a force perpendicular to the cup surfaces of at

least 100 pounds. Normally a cleat is manually engaged via two levers that increase the cup

curvature and help to create suction against a surface; I significantly reduced the levers to

“dolphin-proof” them, drilling holes into the stubs that could be manipulated by a custom

tool machined by Vadim. Later acetal plastic boxes were fabricated that cover the cleats and

their holding arms for additional security. The holding arms were designed such that the

cleats could move freely by ˜0.5” in any given direction to allow the cups to adjust to the

pool wall.

During installation, the engagement of the cleats and attachment of the protective boxes

are performed by a diver; they must also be re-tightened by a diver approximately once every

two weeks. Because of this complication and because the suction cups and boxes were deemed

aesthetically displeasing by aquarium o�cials, a test was performed to ensure that the cleats

are necessary to adequately reduce the splay of the bottom panel from the pool wall despite

the strengthening of the upper array. It was proven that that they are.

Due to imperfections of the suction cleats caused during manufacture, shipping, or usage,

several replacements must be kept on hand for when one loses suction. Even among newly-

arrived suction cleats, approximately 75% proved incapable of at least two weeks of suction
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2.6. Hydrophone Array Mk. II

in air, and 25% in water during fish tank testing (success in air seemed to predict success in

water). Only those maintaining suction for at least two weeks in water were among the first

batch of suction cleats deployed.

Note that all formerly marine-grade stainless steel fasteners were replaced with acetal

plastic fasteners or titanium fasteners, for fear of stainless steel’s imperfect corrosion resistance

in saltwater. As time went on many acetal fasteners were replaced with titanium fasteners

for improved mechanical strength.

Four Mk. II Hydrophone Arrays have been permanently installed in the EP of Dolphin

Discovery since June 2017. Apart from the need for occasional reattachment of the suction

cleats and their boxes, for occasional algae cleaning, and for one on-the-spot mechanical

modification, they have remained surprisingly robust to their environment for almost a year.
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2.6. Hydrophone Array Mk. II

(a) (b)

Figure 2.7: Mk. I Hydrophone Array

(a) Selection from a mechanical drawing. Array

is depicted attached to a small section of acrylic

wall, which visibly has an approximate “T” cross-

section. Notable pieces include two C-channel

brackets hugging both the pool lip and a rectan-

gular plate atop the lip, a central cylindrical pole

containing cabling between two square support

rods and secured by a thin rectangular piece, and

the bottom panel with four holes for hydrophones.

(b) A photo of an installed array.
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2.6. Hydrophone Array Mk. II

Figure 2.9: Mk. I Hydrophone Array Panel Selection from a mechanical drawing for

Mk. 1 Hydrophone Array Panel. Visible in both the top and bottom images are four holes at

the panel’s four corner for holding hydrophones. These holes have two diameters along their

lengths, fitted to the two-diameter geometry of the hydrophones, so that the hydrophones

are held at fixed distances from the panel face. Note that the hydrophone inserts seen in

Figure 2.6 are not included in this diagram as a simpler version (not shown) was designed and

implemented at short notice. Also visible in the bottom image are grooves for the support

rods, for the cable pole, and for the hydrophone cables.
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(a) (b)

Figure 2.10: Mk. II Hydrophone Array

(a) Selection from a mechanical drawing. Array

is depicted attached to a small section of acrylic

wall, which visibly has an approximate “T” cross-

section. Consult the main text for a full description

of modifications. Protective boxes for suction cups

are not shown.

(b) A photo of an installed array.
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2.6. Hydrophone Array Mk. II

Figure 2.12: Mk. II Hydrophone Array Panel Photo of the Mk. II Hydrophone Array

Panel, partially assembled. From the Mk. I the panel itself has been rotated 90 degrees, has

had various holes added for fasteners, and includes fuller hydrophone inserts, from Figure

2.6, with near-parabolic cuts. Visible on the top of the panel is a collar securing the cable

pole. Most notable is the addition of two acetal plastic arms holding two “suction cup cleats,”

described in the text.
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Chapter 3

Dolphin Surveillance System:

Cameras and System Infrastructure

3.1 Cameras

Recall that whistle attribution as we intend to achieve it at the National Aquarium consists

of two tasks: sound source localization, accomplished by processing audio data received from

the hydrophone arrays described last chapter, and visual localization of potential sound

sources. The visual localization task involves not only locating where potential sources are at

the times that sounds of interest are received, but identifying these potential sources uniquely,

so that across time all sounds are properly assigned to their common sources.

The first-subtask, locating potential sources at particular times, starts with visually

locating sound sources in photo or video feed based on a priori information about visual

features that distinguish them from background. The result of this image processing task is

locations for the potential sound sources in camera coordinates, which for a single camera

consists of a set of 2D pixel points. To match these locations with the results of sound source

localization for attribution, these camera-coordinate locations must be converted to locations

in world coordinates, or real space. For a point represented in 2D pixel coordinates (here the

47



3.1. Cameras

camera is assumed to be a lens-less pinhole camera) as [u v 1]T and in 3D world coordinates

as [x
w

y
w

z
w

1]T the transformation can be expressed as follows:
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(3.1)

where K is a matrix of the camera’s intrinsic parameters (including focal length, image

sensor format, and principal point), and R and T are extrinsic parameter matrices describing

the camera’s position in the world – they denote rotation and translation matrices, respectively.

Obtaining the linear intrinsic parameters K is usually a simple task involving an in-lab

calibration or asking the manufacturer. Obtaining extrinsic parameters R and T is more

di�cult, typically requiring an in situ calibration. Also, it is important to note that solving

Equation 3.1 for a point’s world coordinates with known camera coordinates produces the

coordinates for a shaft of light; solving for a point’s 3D world coordinates exactly requires at

least two cameras and a more complex mathematical treatment, and thus requires finding

the extrinsic parameters for two or more cameras.

At the aquarium, several factors complicated accomplishing the first-subtask of locating

potential sources. For any camera placed so as to visualize the dolphins from above the

pool, the air-water optical interface was troublesome: various algorithms I implemented for

determining the camera coordinates of dolphins (excluded from this thesis) were disrupted by

a “shimmering surface” or sun glitter e↵ect (light reflecting o↵ a dynamic water surface), and

the mathematics for finding the mapping from camera coordinates to world coordinates were

complicated by refraction. Also, the distance at which such a camera must be placed from

the water and dolphins not only amplified both the linear and nonlinear e↵ects of camera

distortion but made the implementation of an ever-more-necessary camera calibration more

di�cult (see Figure 3.1). For any camera placed on the pool wall so as to not encounter
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3.1. Cameras

Figure 3.1: Camera Calibration Chessboard Standard, established practice for cali-

brating both a camera’s intrinsic and extrinsic parameters involves recording a chessboard

of known grid-size at many positions/orientations and optimizing the necessary coordinate

transforms. Below is an 8’x4’ floating chessboard made for this purpose.

an air-water optical interface (a setup which for some time was not feasible), the primary

complicating factors were the need for multiple cameras to cover the space, and again the

logistics of performing camera calibrations.

The second sub-task, uniquely identifying the potential sources, can be trivial if the

di↵erent sources can be easily distinguished in any arbitrary photo or video frame. However,

for dolphins it is at best possible to distinguish among sources in certain frames. In this

case, the standard solution for extrapolating this information across frames is object tracking.

Object tracking involves following objects over sequential video frames as they continuously

move in space. At the aquarium, the unique di�culties of object tracking primarily consist

of those that a↵ected potential source localization, if to a lesser extent (i.e., it is easier to

localize an object when its location a short time ago is known, which is the case in tracking).

With the overall task of visual localization having been introduced, I now discuss the
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3.1. Cameras

hardware installed towards achieving it. At the time of installation, installing underwater

viewing cameras was not practical (and currently is to a limited extent). Considering this, it

was quickly determined that the best views of the EP were obtained by cameras placed on a

catwalk extending across the EP, measured to be 46 feet above the water surface. On this

catwalk it was not only possible to place a single camera with a full overhead view of the EP,

but several cameras in a line that collectively covered the full pool and achieved two-camera

viewing overlap at all points, allowing for a stereoscopic approach to overcoming the refractive

e↵ects caused by the pool surface’s air-water interface, and potentially to obtaining reliable

3D world coordinates for dolphins.

The camera type chosen, the AXIS P1435-LE, was suitable on the basis of its relatively

wide field-of-view (˜95o horizontal, ˜51o vertical), low-light sensitivity (˜0.02 lux), resolution

(1080p), frame-rate (theoretically 60 Hz), and for being a powered-over-ethernet (PoE) network

camera (IP). As we required that the cameras be operated from positions tens of meters from

their hub/power and share a common clock, this Cat-cable-mediated standard seemed suited

to our needs.

The cameras were attached at the edge of the catwalk base Figure 3.2. They were directly

attached to an optics-grade adjustable angle bracket that can in turn slide along an optical

railing, which allowed for the camera view to be adjusted during installation.

Ultimately, a failed large-scale attempt at calibrating for the cameras’ extrinsic parameters

Figure 3.1 led me to abandon a precise stereoscopic approach involving all five cameras and

opt for relying on the one, primary overhead camera. Towards performing a rough 2D

mapping between camera coordinates and “pool coordinates,” the aquarium sta↵ helped me

measure out a small grid of black lines visible in this camera on the bottom of the pool Figure

4.1a, and I measured the catwalk with respect to the same coordinate system. A reliable

automated visualization localization algorithm is still being researched, as sun glitter foils

standard approaches, including background subtraction/blob detection, adaptive correlation

filters, and cascade objection detection.
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3.1. Cameras

Figure 3.2: Mounted AXIS P1435-LE Camera Photo of a camera (AXIS P1435 LE)

mounted on the catwalk spanning the EP. The camera is mounted to an adjustable angle

bracket (Thorlabs Adjustable Angle Mounting Plate), which in turn is connected to a slideable

piece on an optical railing (Thorlabs 25 mm Construction Rail) attached to the catwalk. The

end of the optical camera is secured to the catwalk railing by a braided steel wire (McMaster

Adjustable-Loop-to-Hook Wire Rope Lanyard, 1/8” Rope Diameter), and for safety the

camera itself is attached to another braided steel wire.
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3.2. Data Infrastructure/Lines

3.2 Data Infrastructure/Lines

Each of the four installed hydrophone arrays, which hang over the lip of the curved, acrylic

EP wall, contains four hydrophones. Outside each array, secured to the nearest metal seam

connecting adjacent pieces of acrylic walling, the aquarium installed a 6”x6”x6” PVC box

that was purportedly (but not actually) waterproof. A 2” hole was drilled into the bottom

of each box, through which the four hydrophones’ two-wire shielded cables enter, bound

together upon exiting the array with polyethylene sheathing (McMaster Spiral Bundling

Wrap, Polyethylene, 3/8” ID, 1/2” OD) and PTFE (Teflon) sheathing (McMaster Chemical-

Resistant Expandable Sleeving for High Temperature, Heavy Duty PTFE, 1/2” ID); after

any “permanent” array installation the hydrophone cables must be placed inside and the

hole filled with silicone sealant (3M) Marine Grade Silicone Clear Sealant). Inside the PVC

box, the four individual hydrophone cables terminate on a single 8-pin male connector, which

in turn connects the corresponding female attached to a 0.5”-diameter “snake” cable: inside

the snake are four shielded twisted wire pairs sharing an outer shield, carrying signals from

the four hydrophones. From the PVC box, the snake cable travels through a 1.5”/1” PVC

conduit along the EP perimeter towards the central concrete slide-out, eventually entering a

waterproof, 1.5’x1.5’x0.5’ stainless steel box. In total, two stainless steel boxes were installed,

one on either side of the EP’s central slide-out, each containing two snake cables carrying

data from two arrays (eight hydrophones).

Also inside each stainless steel box is a MOTU 8M audio interface that digitizes eight

analog hydrophone signals at 192 kHz and conveys them to the computer hub some distance

away; the two audio interfaces are internally connected via a Cat5 cable that slaves one

to the other (with regards to data as well as clock time), and a single optical cable from

one MOTU sends data to the hub. A complicating factor is the need to provide a 5V

bias voltage across the two wires of each hydrophone. This voltage is necessary in any

condenser hydro/microphone for impedance conversion, helping to reduce signal loss. This

voltage was provided by a 5 V DC power supply (powered by a 120 V outlet inside the
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box, shared with the MOTU) powering an 8-channel voltage fan-out circuit commissioned

from Sanjee Abeytunge. Technical details of Sanjee’s board and my wiring are excluded

(see the hydrophone manufacturer, Cetacean Research Technology, for standard hydrophone

operation requirements).

The cameras, being powered-over-ethernet (PoE), are served by individual Cat5e cables

running some distance along Dolphin Discovery’s network of upper catwalks. The cables

converge on a single Ethernet switch (Ubiquiti Networks EdgeSwitch 24 Port 250 Watt

Managed PoE+ Gigabit Switch with SFP) connected to the hub.

At the computer hub (currently, a late 2013, 12-core Mac Pro running macOS Sierra), the

hydrophone signals are received as standard audio input via the MOTU 8M audio interface;

most audio settings were changed in proprietary MOTU mixing software. The cameras are

accessible via IP addressing, and their settings were changed through firmware.

3.3 Recording Software

As the ultimate purpose of the hydrophone and camera sub-systems is to provide long-

term audiovisual recordings of dolphin interactions, we wished to run software on the

hub for recording time-synched audio and video continuously. No pre-made software was

readily available for this purpose. I decided to develop software on the Matlab platform for

the strength of its function packages (toolboxes), for its relative user-friendliness, and for

consistency with other areas of the aquarium codebase.

The MOTU 8M audio interface and in turn the 16 hydrophone feeds can be straightfor-

wardly accessed through Matlab’s audio device reader and sequential 5-minute, 16-channel

WAV-format files (this approaches the 2 GB WAV file limit) generated. Complicating matters

slightly, two parallel programs (one taking odd and the other even counts of a recording

series, as dictated by the system clock) must be run to accomplish truly continuous recording

due to the extra time required by a single program to write the audio to disk.
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3.3. Recording Software

Unfortunately, Matlab is not practically capable of independently accessing the feeds of

multiple IP cameras and making parallel recordings, and so using an intermediary application

has been necessary for recording video. The most suitable application found at present is the

IP surveillance program Xeoma. It provides an interface for real-time viewing of all video

feeds, and dumps these feeds into archives. Through Matlab, I access these archives and save

video in 5 minute chunks time-synched to the 5-minute audio files.

A single master Matlab script activates the three above scripts on separate parallel workers

(i.e., independent processing units) on the computer hub, and all data is recorded to a large,

48-Terabyte RAID (for Redundant Array of Independent Disks) device (Promise Technology

48TB Pegasus2 R8 Thunderbolt 2 RAID Storage Array). Various helper scripts have been

written for small tasks such as discarding old data and consolidating daily recordings.
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Chapter 4

Dolphin Surveillance System: System

Calibration/Testing

4.1 The Impulse Response Function

With the system hardware installed, I sought to measure the acoustic impulse response

functions (IRF) of the hydrophone sub-system. In this case, an “impulse response function”

refers to the acoustic response received in one hydrophone (at a particular position in the

pool) to an acoustic impulse – ideally, a delta function, a signal of infinite amplitude lasting

for an infinitesimal time – generated at another particular position in the pool. Ideally, the

distortion of the source signal manifesting in the received signal is a function of the physical

environment through which the source signal travels (in actuality, it also includes the response

properties of the sending and receiving devices).

I had two reasons for measuring the hydrophone system’s IRF’s. First, under certain

circumstances, an IRF contains complete information about the multipath contributions of

the received signal corresponding to any source signal, not just an impulse (but for constant

source and receiver positions). As will be discussed more in the introductory section of the

chapter on Time Delay Estimation (5.1), the multipath contributions of a received signal
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4.1. The Impulse Response Function

result from the source signal reaching the sensor from many di↵erent paths (e.g., due to

reflection), creating di�culties in time delay estimation for which, typically, only the direct

path is important. Through a deconvolution process, a source/sensor pair’s IRF can remove

multipath e↵ects from a received signal, leading to easier time delay estimation.

As an aside, note that the circumstances under which the IRF contains all the information

about the multipath contributions of the received signal for any source signal include that

the system is linear and that it is time-invariant. Linearity means that, if the responses of

the system, y
i

[t], to the individual input signals x
i

[t] are known, then an input to the system

consisting of the weighted addition of several x
i

[t] produces a predictable response consisting

of the weighted addition of the corresponding y
i

[t]:

X

i

c
i

x
i

[t] !
X

i

c
i

y
i

[t] (4.1)

Time-invariance means that the time at which we apply some input signal x
i

[t] to the system

has no e↵ect on the response y
i

[t] other than shifting it in time. That is, for any time shift T ,

we have:

x[t� T ] ! y[t� T ] (4.2)

While the response functions of the speaker-hydrophone-aquarium system are safely considered

to be time-invariant, they are not linear, owing to a number of nonlinear contributions, in

particular the amplitude and frequency dependent responses of the speaker and hydrophones,

and electrical noise in the accompanying electronics. As the relative magnitude of these

e↵ects are unclear, it is possible that a linear, time-invariant assumption would still hold.

The second primary reason for measuring the hydrophone system’s IRF’s was for producing

signals at known locations in the pool that were easy to extract time delay estimations from

and therefore localize. This was important to ensuring that the various principles and

large-scale geometrical measurements on which the hydrophone system is based are valid.

Again, as will be reiterated in more detail in Section 5.1, time delay estimation for whistles is

made di�cult by multipath complications as well whistles’ slow (and often irregular) onset
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above the acoustic noise floor. By contrast, time delay estimation for delta-like impulses is

relatively easy because of their abrupt onsets, which suits them to simple algorithms that are

mostly insensitive to multipath e↵ects. Indeed, it is for this reason that attempts at pool

sound localization for echolocation signals have been successful.

4.2 Calibration Methodology

The overall strategy for obtaining IRF’s was to play an appropriate signal on an underwater

speaker, a Lubbell LL916H, suspended at known heights from a buoy at known distances

with respect to the hydrophone arrays. As the heights of the hydrophone arrays as well as

their projected positions with respect to an orthogonal, two-dimensional grid system on the

bottom of the pool were already measured, the source points as well as all hydrophone arrays

occupied known positions on a common coordinate system. Photos of aspects of the process

are shown in Figure 4.1, and will be referred to throughout this section.

Before discussing the logistics, it is important to note that, though the goal of the

process was to obtain impulse response functions, the signal I played from the speaker was

not a delta-like impulse. Given the limitations of the speaker system and considerations

of animal husbandry, it would not have been practical to play a sound approximating an

infinite-amplitude, infinitesimal-duration delta function. However, with a quick derivation we

can see that it is not strictly necessary to use an impulse to acquire the IRF.

For a linear, time-invariant system (LTI), described last section, the received signal y[t]

for a known source signal x[t] can be described as a convolution with the IRF, h[t]:

y[t] =
1X

⌧=�1
x[⌧ ]h[t� ⌧ ] (4.3)

We can take the Fourier (F ) transform of both sides (noting X[f ] := F{x[t]}, Y [f ] :=

F{y[t]}, H[f ] := F{h[t]}), and, with the convolution simplified in Fourier space, rearrange

the equation to pull out the Fourier-transformed IRF (called the frequency response function)
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(a) Overhead view of a impulse response testing session. Four white ropes

connected to the buoy are held by assistants at the four panels. Testing

locations are circled in red; note that each designated location includes an

upper and lower position

(b) A close-up of the buoy used for testing. The speaker is held by the

winch in the center. Not shown is the corrugated aluminum cylinder around

the vertical aluminum railing, the target of laser range-finding.

Figure 4.1: Impulse Response Testing
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before taking the inverse Fourier transform of both sides to recover the IRF.

F{y[t]} = F{
1X

⌧=�1
h[t� ⌧ ]x[⌧ ]} (4.4)

Y [f ] = H[f ]X[f ] (4.5)

F�1{H[f ]} = F�1{Y [f ]

X[f ]
} (4.6)

h[t] = F�1{F{y[t]}
F{x[t]}} (4.7)

The above suggests that we can obtain the impulse response given any pair of source

and received signals. However, to ensure that the denominator is nowhere zero, and to avoid

biasing for any frequency in particular, in practice it is best if the source signal’s power is

uniformly distributed across all frequencies (also a property of a true impulse). Such a signal

can be obtained by inverse Fourier transforming a signal designed in complex frequency space

that has unitary power at all frequencies, with random phase. Note that if the signal thus

obtained is not played at the appropriate sampling rate in its entirety, its power spectrum

will not be unitary, but rather random with powers falling on a Gamma distribution – this

is consistent with the power reflecting the absolute value of Gaussian variable pairs in real

and imaginary space. The duration of the signal should be longer than the longest expected

multipath travel time (one second was used). Moreover, the signal can be repeated a number

of times (360 was used) to account for various stochastic e↵ects: the IRF is constructed from

the median value for every time point.

The Lubbell LL916H speaker responsible for playing the calibration signal has a spliced,

125’ cable that I connected to an amplifier-transformer-power-source circuit (see speaker

manufacturer for standard operation), which received input from an analog output of one of

the two MOTU 8M audio interfaces serving the hydrophone system. In this configuration,

the 192 kHz calibration sound was played in synch with the 192 kHz audio recordings, and

both were managed by the hub computer. Also on the hub computer, a video record of

the calibration was kept by the software described last chapter. I personally managed the
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hub computer during this time, and via an intercom system communicated to the assistants

below.

Four assistants were positioned on ladders around the EP, one at each hydrophone array.

The assistants each held a rope connected to a buoy Figure 4.1b from which the Lubbell

speaker was suspended by a winch/spindle (maker/model unknown); the ropes were used

to move the buoy (two JIM BUOY Catalina Series Economy Life Rings, 17” Diameter,

bolted together) across the EP and stabilize it. Also on the buoy was a 6”-diameter, 2’-high

corrugated aluminum cylinder that the assistants were instructed to target with a laser

range-finder (indicated previously) whenever the buoy reached a designated position in the

pool; these measurements were recorded and later used to find the speaker location with

respect to the hydrophone arrays using a standard triangulation procedure.

In total, the buoy was moved to seven positions in the pool for two di↵erent speaker

heights, seen in Figure 4.1a.

4.3 Whistle De-Reverb

IRF’s for the fourteen testing locations, for each of 16 hydrophones, were obtained. An

example is shown in Figure 4.2. Referring to Figure 4.1a, this IRF is for a source located

at the upper-far-left point and a hydrophone located in a panel at the far right. The red

line marks the first incidence of the impulse, and the green line marks my geometry-based

prediction of the last of the primary reflections, about 12 milliseconds after the first incidence.

We see that several peaks follow and gradually decay to the noise floor after about 110

milliseconds, indicating higher-order reflections, or reverberation (technically, anything after

50 milliseconds is echo). In general, we expect this picture to be unique for every pair of

source and hydrophone locations, dependent on pool geometry and material properties. I

have done preliminary work modeling these e↵ects using a ray-tracing simulation approach,

which is excluded.
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Figure 4.2: Example of Impulse Response Function (IRF) Example of an Impulse

Response Function (IRF), obtained by playing a broad-frequency calibration signal at the

upper-far-left calibration position and listening from a hydrophone in the far right hydrophone

array, as seen in Figure 4.1a. The red line marks the receipt of the first incidence of the

signal, the green line marks the estimated receipt of the last of the primary reflections.

Recall that the first reason for obtaining the IRF’s was to remove multipath contributions

– everything following the first incidence in Figure 4.2 – from received whistles. While in

theory this can be performed with a simple deconvolution of the whistle signal by the IRF by

inverting Equation 4.3, in practice it is better to use an approach that tries to minimize the

e↵ects of noise on the deconvolution. A standard method is the Wiener deconvolution. It will

be stated without derivation. For a received signal y[t], the estimate source signal x̂[t] can be

written as the convolution x̂[t] = (g ⇤ y)[t]. The Fourier transform of the Wiener kernel g[t] is

given by:
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G[f ] =
H⇤[f ]S[f ]

|H[f ]|2S[f ] +N [f ]
(4.8)

where S[f ] is the power spectral density of x[t], H[f ] is the Fourier transform of the IRF, and

N [f ] is the power spectral density of the estimated noise. A representation of the performance

of the Wiener deconvolution method on a whistle-like sound played in the pool where the

IRF signal was generated is given in Figure 4.3.

It should be readily apparent that the Wiener deconvolution operation did not recover

the original signal. In fact, it further degraded the signal with noise in a number of frequency

bands; outside these bands, traces of the original signal can be seen. The cause of this added

noise is unlikely to be inaccurate values for the noise term N [f ] in Equation 4.8, as these

were derived from real background noise and, moreover, are not present in the standard

deconvolution, which produces similar results. More likely, the values for the estimated power

spectral density of the original signal, S[f ], as well the IRF H[f ] are unreliable at certain

frequency bands. One reason is that the frequency response of the Lubbell speaker and

circuitry serving it are not accounted for whenever the input “source signal” is used in a

calculation. A way to better account for this in the future would be to record the sound at

the source point with a similar hydrophone as used in the hydrophone arrays, and to use this

signal instead of the input signal as the source for deconvolution. However, were the speaker

biasing particular frequency bands or in general adding unspecified distortion to source signals,

we would still expect a non-optimal estimate for the IRF’s. Perhaps with detailed knowledge

of the speaker system response it would be possible to craft a compensating calibration signal.

Note that similar results as Figure 4.3 were obtained across whistle/IRF pairs. Attempts

were made to use filtering and an ad hoc approach of ignoring frequency bands expected to

accumulate high noise in the deconvolution, and the standard deconvolution was also used;

nothing tried significantly improved the quality of the recovered signal.
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Figure 4.3: Wiener Deconvolution of a Whistle-like Signal with the IRF a: The

original whistle-like tonal signal played at the source location (far right point in Figure 4.1a).

Displayed in a standard 2048 Hamming-window spectrogram. b: The signal received at a

hydrophone (from the far right array in Figure 4.1a). Note that a bandpass filter was applied

between ˜3.25 and ˜8.75 kHz. c: The deconvolved signal.
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(a)

(b)

(c)

Figure 4.3
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4.4 Impulse Response Function Localization

For the purposes of testing the aquariums system’s capacity for signal localization, however,

the IRF’s proved helpful. First, I manually extracted the first incidence times for all testing

locations in all hydrophones, from plots resembling Figure 4.2. While a peak-detecting

algorithm might have accomplished this task, given the occasional appearance of false peaks

and the relatively small size of the data set I determined it was safer and potentially more

time e�cient to proceed manually. Allowing for error, each individual time became a set of

times, corresponding to the extracted time added to a set of Gaussian random variables (mean

of zero, and standard deviation calculated to be a multiple of the intra-hydrophone-array

time variability between upper and bottom rows – the di↵erences between these channels

were found to be mostly noise-based) added. By simple subtraction these times became

arrival time di↵erences (TDOA’s) between pairs of hydrophones. The TDOA’s were fed into

a standard sound localization algorithm termed spherical interpolation, described in more

detail in Section 6.2; each set TDOA’s was mapped to a single point in space.

Figure 4.4 shows the results in fourteen plots, one for each IRF. While these plots are

two-dimensional projections of three-dimensional results, significant information is not lost in

the projections, as the hydrophone panels have e↵ectively no localization precision along the

Z-axis (substantiating my original plan to include a Z-displaced “mini-panel” in the Mk. II

Hydrophone Array). In two dimensions the clouds of localized points can be approximated

as ellipses and characterized by two orthogonal radiuses (a width and a length). Under this

approximation, I have calculated the average areas of the clouds as well as the percentage

of the EP they occupy, as well as the distance between the true calibration points from the

nearest cloud points; this is done for all calibration locations as well as separately for midline

and non-midline locations – as is visible from the plots, the former are localized more poorly,

likely a consequence of the array and pool geometry that requires further examination. These

data are in Table 4.1.
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4.4. Impulse Response Function Localization

Table 4.1: Performance of Spherical Interpolation on IRF Signals

Statistic Value

Mean Cloud Area (ft2, % of pool) 10.84 +/- 9.63 (0.24 +/- 0.21)

Mean Cloud Area, non-midline (ft2, % of

pool)

6.310 +/- 2.51 (0.14 +/- 0.054)

Mean Cloud Area, midline (ft2, % of pool) 16.88 +/- 12.48 (0.37 +/- 0.27)

Mean Distance of True Point from Cloud (ft) 2.63 +/- 3.76

Mean Distance of True Point from Cloud,

non-midline (ft)

2.29 +/- 1.75

Mean Distance of True Point from Cloud,

midline (ft)

3.08 +/- 5.86
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4.4. Impulse Response Function Localization

Figure 4.4: IRF Localization Each plot represents a simplified overhead 2D projection of

the EP. Indicated as a green cross is the true position of the IRF. Indicated by a red cross

(not usually visible) is the position of the estimated position of the IRF, from estimated time

of arrivals; each blue asterisk represents the estimated position of the IRF from estimated

time of arrivals plus Gaussian random variables, described in the text. The four red cluster

of crosses around the EP perimeter indicate hydrophone positions. The lines from them are

proportional to the hydrophones’ estimated time estimation error; when oriented towards the

true point, they indicate that estimated times were too late; when towards, too early.
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4.4. Impulse Response Function Localization

(a) (b)

(c) (d)

Figure 4.4
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(e) (f)

(g) (h)

Figure 4.4
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(i) (j)

(k) (l)

Figure 4.4
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(m) (n)

Figure 4.4
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4.4. Impulse Response Function Localization

The data indicate that the cloud of localization points consistently occupies less than

1% of pool area (or, equivalently in this case, volume) – note that the plot markers are

somewhat exaggerated in size for visibility – and that the true sound source is reliably

within 5 feet of it. There is no appreciable overlap of clouds belonging to unique calibration

locations in XY except at midline positions, where distinguishing among the calibration

points is not realistically feasible. In practice, however, I expect the need to distinguish

between two midline sources to be relatively rare; the dolphins in the EP tend to circulate

around the pool perimeter. In general, these data seem to suggest that, were dolphins to

vocalize signals resembling an impulse – their echolocation clicks might qualify – depending

on their alignment it would be possible to distinguish them at a separation of two or three

body-lengths. Depending on dolphin number and clustering, this might certainly be adequate

to achieve successful sound attribution for most vocalizations. It is important to note that

cloud size was manually chosen to minimize the ratio of distance-to-point/area, and that there

is room for a more rigorous quantitative optimization. Moreover, with a more substantial set

of IRF’s it might be possible to develop a correction function that compensates for not only

the localization clouds’ spread but their o↵sets from the expected source points.

As an aside, it is obvious that the cloud of localized points is always oriented towards

the pool center, which is a result of the spherical interpolation method in combination

with our sensor geometry that deserves further investigation. If it were possible to collapse

the distribution with modifications in sensor geometry or the algorithm itself, the system’s

capacity for sound localization might improve drastically.

As a quick check, the estimated time delays of the IRF’s were also used to determine

whether any of the 16 hydrophones consistently underperforms. For each calibration point,

the ideal arrival time di↵erences were calculated (requiring a knowledge of the speed of sound

and the location of source and hydrophones), and deviations from the estimated arrival time

di↵erences calculated. The mean and standard deviations across all calibration points were

calculated for every hydrophone and are plotted in Figure 4.5. No significant di↵erence
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4.4. Impulse Response Function Localization

Figure 4.5: Mean Time Delay Estimation (TDE) Error of Hydrophones Plot of mean Time

Delay Estimation (TDE) error of hydrophones, calculated from estimated and theoretical

time delays for IRF’s. Error bars indicate standard deviations.

among hydrophones is visible.

Overall, I take these results as an indication that the system and the various measurements

it depends upon to be valid. Whether whistles can be localized as well as IRF’s will investigated

later in this thesis.
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Chapter 5

Time Delay Estimation for Whistles

5.1 Introduction

The method of sound attribution proposed here consists of two parts: sound source

localization and matching the sound origin with a potential speaker identified in video

feed. Recall that sound source localization ascribes an area in space to a signal of interest

based on predictable changes that alter it during its travel from source to sensor location(s).

Matching the sound origin with a potential speaker involves a comparison of the sound

source coordinates from sound source localization with video-derived coordinates of potential

speakers to choose the most probable speaker. Sound source localization for whistles is

the focus of this thesis; performing speaker matching e�ciently would require robust visual

tracking of dolphins across our cameras, which has not yet been developed.

Across Sections 1.5 and 2.2 I broadly reviewed di↵erent approaches to sound source

localization for whistles and argued for a splay configuration of hydrophones around the EP

that is suited to a time-di↵erence-of-arrival (TDOA) approach to sound source localization,

which is based on using the time-di↵erences-of-arrival (or TDOA’s) of a signal of interest

between pairs of sensors to generate a set of hyperbolae that each contains a potential set

of potential sound origin points. I will discuss the problem of reconciling the hyperbolae to
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5.1. Introduction

settle on a single source point in Section 6.2. What currently concerns us is a prerequisite to

obtaining a source point from the set of hyperbolae: obtaining the di↵erences in arrival times

for whistles.

Obtaining good TDOA’s is crucial for mounting a successful attempt at geometric sound

source localization. The precision necessary is high: consider that it takes a sound wave

approximately 0.5 ms to travel one meter in water, which represents a mere 0.1% of an

average 0.5-second whistle’s length. As a whistle can take as many as 5 ms to reach its

maximum energy in a hydrophone, rising gradually above the noise floor, 0.5 ms can be easily

lost depending on whistle source intensity, distance of the dolphin from the hydrophone,

and directional e↵ects on amplitude from either dolphin or hydrophone orientation. As

high precision is required of time delay estimation for many applications, many strategies

for time delay estimation do not simply compare the timing of a signal’s perceived onset

across sensors, but compare the timing of many of a signal’s features across sensors: the

most-used comparison, the so-called cross-correlation, compares entire waveforms between

sensors. Unfortunately, even this method is stunted in the current problem due to the

influence of multipath propagation.

Multipath propagation occurs when a signal travels from source to sensor along multiple

independent paths. The most common reason for multipath propagation is the existence of

reflective boundaries, such was the various concrete walls and the water-air interface of the

EP. With such boundaries present, a signal not only travels from source to sensor directly, but

travels from source to sensor along every reflective path that unites the two; if you imagine

the sound source as emanating a sphere composed of billiard balls in all directions, you can

imagine that some of the balls that initially travel away from a fixed sensor will be redirected

towards the sensor after bouncing o↵ an appropriate combination of walls. For a source signal

s(t), M hydrophones, N
j

multipaths reaching hydrophone j, and path-dependent noise term
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5.1. Introduction

e
j

(t), we can idealize the multipath signal received in hydrophone j as (Spiesberger, 1998):

r
j

(t) :=

NjX

n=1

a
j

[n]s(t� t
j

[n]) + e
j

(t) (5.1)

where a
j

[n] is a scalar that modulates the signal amplitude for a given hydrophone and

multipath. Even in this idealized, linear representation of the multipath problem, note that

a single source signal generates a unique signal in every sensor, one that depends on the

locations of the source, sensor, and overall acoustical properties of the environment. As a

result, just as we cannot expect to properly estimate hydrophone arrival time di↵erences by

comparing perceived onset times, we cannot expect to properly estimate hydrophone time

arrival di↵erences by methods like the cross-correlation, which generally expect every sensor

to have received an identical signal.

In the upcoming section I will review some strategies I implemented for estimating TDOA’s.

To assess their performance, I used a set of 60 artificial signals played from a Lubbell LL916

underwater speaker at 13 distinct, known (i.e., with respect to the hydrophone array) locations

in the EP of the National Aquarium as depicted in Figure 5.1; these signals were played in

the same session with the same apparatus and methods as the pseudo-white noise played to

find impulse response functions. With the source locations known, the theoretical delay times

can be calculated straightforwardly from the absolute time-of-arrivals, obtained by dividing

each source-sensor distance by the speed of sound in water, and compared with observed

time-delay-of-arrivals for any pair of hydrophones.
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5.1. Introduction

Figure 5.1: Approximate XY Locations of Tonal Sounds for Evaluation of Time

Delay Estimation Methods Each red circle denotes two calibration locations, one higher

(6 feet deep) and one lower (15 feet deep). Due to time constraints the lower, far left point

was not reached.
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5.1. Introduction

The shape of the signal as well as the number of times it was played was heavily impacted

by husbandry concerns and potential conflicts with another aquarium project (the tonal signal

was not to be too “dolphin-like”). The waveform was obtained in Matlab by calculating the

instantaneous phase by integration of the desired frequency function, and played through

Matlab.

The problem of estimating arrival time di↵erences is an active area of research in signals

engineering, and has been for some decades. I was limited in the number of methods I

could design and/or implement. Below I review the following methods: a custom-made

waveform onset detector, a custom implementation of the cross-correlation maximizer as well

as Matlab’s internal “finddelay” implementation, a custom implementation of the Generalized

Cross Correlation with Phase Transform (GCC-PHAT) maximizer (Matlab’s implementation

is excluded, having been found deeply ine↵ective), and a custom-made two-dimensional

cross-correlation maximizer of spectrograms. One obvious way to extend the work of this

thesis would be to implement more methods.

Every TDOA estimation method that follows was implemented on whistles that were

subjected to bandpass filtering. Preliminary investigations suggested that bandpass filtering of

whistles is essential for obtaining reasonable results with every included method. The bandpass

filter, which takes takes an input signal and outputs a signal with all frequency components

above some maximum and below some minimum removed, was employed computationally

using Matlab on the digital whistle audio files. Note that a bandpass filter that performs

the frequency thresholding task perfectly (e.g., that passes all frequency components in the

passband without bias, that completely rejects all frequency components outside the passband,

and does not su↵er distortion at the edges) does not exist, and so di↵erent bandpass filter

constructions are suited to di↵erent problems. For our problem, I emphasized that the filter

possess a flat frequency response in the bandpass region. Additionally, I demanded that the

filter possess the zero-phase property, which eliminates the possibility of filter delay, signal

shifting in time resulting from filtering, and can be implemented by passing a signal through
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5.2. Signal Onset Method

a filter in both forward and backward directions.

Additionally, an arrival time di↵erence requires two signals, and I had some choice in

this decision. While sometimes the set of time delays for every possible pair of received

signals is considered, it can be more manageable to use a single received signal as a universal

reference, which I did for the purposes of algorithm comparison – after the best approach is

identified I will use all pairs for completeness. Moreover, since I knew the exact waveform

of the source signal (if not including the distortion caused by the speaker – this might be

fixed in the future), for half of the evaluations I “cheated” and used this ideal signal as a

universal reference. Using this ideal signal as a reference in the cross-correlation method

of time delay estimation represents an additional named method of time delay estimation,

called the matched filtering approach.

5.2 Signal Onset Method

The first method I will explore is perhaps the most naive approach one can take to time

delay estimation, involving detecting the signal’s onset (or a comparable landmark) in each

hydrophone based on the amplitude characteristics of the signal waveform. The advantage of

this method is that it avoids the di�culties created by multipath contributions to the signal,

as theoretically the first source signal copy in any received signal results from the direct path.

Such methods, even simpler than the one proposed, have been employed successfully for the

purpose of sound source localization.

Note that it was immediately obvious that this method would only be e↵ective for a

tightly band-passed signal, whose waveform contains a significantly reduced number of false

onset peaks. The next section, pertaining to the cross-correlation method of time delay

estimation, will more explicitly consider the advantage of signal band-passing. Moreover, it

was found that this method was most e↵ective operating on a signal’s envelope, the signal

“magnitude” excluding oscillations resulting from phase, rather than the signal itself. The
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5.2. Signal Onset Method

envelope can be obtained by taking the Hilbert transform of the signal, which obtains the

so-called analytic representation of the signal from which the envelope can be extracted.

In order to better avoid the onset of false signals, the algorithm contains two distinct

steps. First, it steps along the signal, comparing the statistics of large windows preceding

and succeeding the current step until a peak of approximately the appropriate width and

mean level is located. Second, with the current step still ahead of the peak, the algorithm

continues stepping, comparing smaller windows until it finds the onset peak, characterized by

its steep rise and high maximum.

On many signals that were not explicitly used for crafting it, the algorithm performs

reasonably well. However, its success is not guaranteed. Examples of both a successful and

unsuccessful detection of onset is shown in Figure 5.2.
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5.2. Signal Onset Method

(a) A successful detection. The detected onset is detected is marked by a red

line. Green is an estimation of the true onset. Separation is 2.4 ms.

(b) An unsuccessful detection. Separation is 42.2 ms.

Figure 5.2: Signal Onset (Landmark) Detection
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5.3. Cross-Correlation Method

Table 5.1: Performance of Signal Onset Method in Estimation of Arrival Time

Delays

Method Reference Signal Bandpass Range

(kHz)

Mean of Abs.

of Deviations

(ms)

Mean of Devi-

ations (ms)

p (Mean

Square of

TMHE) (ms)

Signal Onset N/A 1.5 - 3.25 10.8± 67.9 �1.00± 71.6 67.8± 53.9

Signal Onset N/A 1.5 - 5.0 13.6± 81.5 �2.00± 86.2 77.4± 58.3

* TMHE := Truncated Mean Hydrophone Error

Note that we cannot say for certain where the true onset of the signal is (the yellow marker

is a relative measure, based on the deviation of the TDOA’s derived from the algorithm’s

found time delays from the geometrically-estimated TDOA’s), whether it is the at the base of

the ˜.05 peak or the ˜0.5+ peak, however the latter is more commonly seen and is therefore

the target of detection. Nevertheless, distinguishing between the two in detection has proven

tricky, as di↵erent signals contain di↵erent mergers of the two peaks (and other “subpeaks”,

as is evident to the right of the true peak in the lower example). While the current algorithm

stands to be refined, not only to improve performance but computational speed, the signal

onset variability we observe across many hydrophones and play locations for the single test

sound suggests that adequately refining the algorithm to be e↵ective on many whistle types

might be unrealistic without a quantitative training set suited to machine learning.

In Table 5.1 is a presentation of the algorithm’s performance across all whistles. Unfortu-

nately, with an error consistently over 10 ms, equating to a distance of over 15 meters, the

algorithm does not perform su�ciently well in its current state.

5.3 Cross-Correlation Method

Imagine that hydrophone i receives a discrete signal in time denoted r
i

[t], and that

hydrophone j similarly receives a discrete signal in time denoted r
j

[t]. Assuming the signals
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5.3. Cross-Correlation Method

are both real, the cross-correlation between r
i

[t] and r
j

[t] is defined as:

(r
i

⇤ r
j

)[⌧ ] :=
1X

t=�1
r
i

[t]r
j

[t+ ⌧ ] (5.2)

The cross-correlation method of arrival time di↵erence estimation expects that the cross-

correlation will reach a maximum when ⌧ = t
delay

, where t
delay

is the desired time. Mathe-

matically this is stated as:

t
delay

= argmax
⌧

(r
i

⇤ r
j

)[⌧ ] (5.3)

This assertion can be made plausible for a simple, deterministic case if we let r
i

[t] = s[t] and

r
j

[t] = s[t� t
delay

]:
1X

t=�1
(r

i

[t]± r
j

[t+ ⌧ ])2 � 0 (5.4)

1X

t=�1
(r

i

[t]2 + r
j

[t+ ⌧ ]2 ± 2r
i

[t]r
j

[t+ ⌧ ]) � 0 (5.5)

1X

t=�1
(r

i

[t]2 + r
j

[t+ ⌧ ]2) � ⌥2
1X

t=�1
r
i

[t]r
j

[t+ ⌧ ] (5.6)

1X

t=�1
(r

i

[t]2 + r
j

[t+ ⌧ ]2) � 2|(r
i

⇤ r
j

)[⌧ ]| (5.7)

1X

t=�1
(s[t]2 + s[t+ ⌧ � t

delay

]2) � 2|(r
i

⇤ r
j

)[⌧ ]| (5.8)

1X

t=�1
s[t]2 +

1X

t=�1
s[t+ ⌧ � t

delay

]2 � 2|(r
i

⇤ r
j

)[⌧ ]| (5.9)

2
1X

t=�1
s[t]2 � 2|(r

i

⇤ r
j

)[⌧ ]| (5.10)

1X

t=�1
s[t]s[t+

⌧=tdelayz }| {
⌧ � t

delay

] � |(r
i

⇤ r
j

)[⌧ ]| (5.11)

(r
i

⇤ r
j

)[⌧ = t
delay

] � |(r
i

⇤ r
j

)[⌧ ]| (5.12)

In general, of course, r
i

[t] and r
j

[t] cannot be assumed to contain exact, shifted copies of s[t]

in any problem. Variable signal attenuation and distortion across sensors as well as general

linear and nonlinear noise contributions are both standard problem features. Despite the
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5.3. Cross-Correlation Method

simplifications of the above derivation, however, the method of maximizing cross-correlations

to estimate arrival time di↵erences has been found e↵ective for many problems, and its use is

standard in estimating arrival time di↵erences for the purposes of sound source localization.

An additional reason we cannot expect r
i

[t] and r
j

[t] to contain exact, shifted copies of s[t]

in the present problem is what I alluded to with Equation 5.1: multipath contributions, causing

the source signal to appear numerous times in the received signals, once for each reflection.

To illustrate this, in Figure 5.3 I plot a particularly gruesome example of cross-correlation for

unfiltered signals received from hydrophones belonging to two adjacent hydrophone arrays.
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5.3. Cross-Correlation Method

(a) Entire cross-correlation. The red line indicates the global maximum, green

an estimation of the real shift.

(b) Zoomed version of above.

Figure 5.3: Basic Cross-Correlation of Two Hydrophone Signals
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5.3. Cross-Correlation Method

The upper plot shows the entire cross-correlation of the two signals; note that the zero

relative shift position is at the center. The presence of many peaks should at once be obvious.

Each peak indicates a relative shift where the two signals are temporarily in alignment; the

greater the peak, the ”better” the alignment. We expect the desired arrival time di↵erence to

be indicated by one of these peaks (in fact, based on our treatment above, the largest one),

and other peaks to indicate both chance noise alignments as well as alignments of the many

source signals from Equation 5.1; if each received signal contains N copies of the source signal,

we can expect N2 such peaks. The oscillatory peaks that occur on a very short time-scale,

separated by about 0.5 ms, are a result of the phases of the ˜2-4 kHz source signal itself;

these are more visible in the bottom plot.

In the bottom plot, the red line indicates the global maximum of the cross-correlation,

and the yellow line indicates approximately where we expect to find this peak based on our

knowledge of the source’s position and thus the real signal delay between the receivers. We

see that these lie on di↵erent peaks of approximately the same height, almost 30 milliseconds

(corresponding to about 40 meters) away from each other. Fortunately, this error is an

extreme case.

Adding a bandpass filter, introduced above, helps the situation significantly – we will take

this for granted in the future. Another simple improvement we can make is to circularize the

cross-correlation, which ensures that the two signals are always overlapping. This prevents

the peaks from artificially shortening the farther we get from 0-delay, seen in Figure 5.3. New

plots are Figure 5.4.
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(a) Entire cross-correlation. The red line indicates the global maximum, yellow

an estimation of the real shift.

(b) Zoomed version of above.

Figure 5.4: Basic Cross-Correlation of Two Hydrophone Signals
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5.3. Cross-Correlation Method

Now the cross-correlation peaks are clustered in a narrower range around the 0-shift mark;

peaks resulting from alignment of noise outside the frequency range of interest have been

eliminated, and it is more likely that the remaining peaks are a result of the source signal.

Unfortunately, we see that the fundamental problem of many similar-sized peaks at significant

separations persists. Nevertheless, in this particular case the error in time estimation has

become a significantly improved 1.6 milliseconds (˜2.4 meters).

Another alternative to the basic cross-correlation procedure is found in Matlab’s finddelay

function. The main di↵erence is that it gives higher weight to peaks closer to 0-shift. This

was also implemented.

Performing the process outlined above (using either my or Matlab’s cross-correlation

approach), using either hydrophone one or the source signal as reference, for all known-position

calibration signals, we can compare the estimated arrival time delays with the real arrival

time delays. Note that when we cross-correlate with the source signal, we are implementing

the matched filter approach to estimating arrival time di↵erence. Briefly, a matched filter is

a linear filter that optimizes the signal-to-noise of an unknown signal relative to a known

template signal.

Referring to Table 5.2, we see that all cross-correlation methods estimate arrival time

delay with no less error than 5 milliseconds, which corresponds to more than 7.5 meters in

water.
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Table 5.2: Performance of Cross-Correlation Methods in Estimation of Arrival

Time Delays

Method Reference Signal Bandpass Range

(kHz)

Mean of Abs.

of Deviations

(ms)

Mean of Devi-

ations (ms)

p (Mean

Square of

TMHE) (ms)

Cross-

Correlation

Hydro. 1 1.5 - 3.25 5.90± 44.2 �0.670± 45.2 48.0± 64.0

Cross-

Correlation

Hydro. 1 1.5 - 5.0 12.9± 22.8 �1.70± 27.0 28.5± 12.9

Cross-

Correlation

Source Signal 1.5 - 3.25 6.5± 80.6 0.770± 41.2 38.7± 48.0

Cross-

Correlation

Source Signal 1.5 - 5.0 11.1± 11.4 2.6± 16.3 23.0± 8.44

Matlab “FindDe-

lay”

Hydro. 1 1.5 - 3.25 5.80± 48.4 �0.562± 49.4 58.3± 79.4

Matlab “FindDe-

lay”

Hydro. 1 1.5 - 5.0 12.8± 22.8 �1.8± 27.0 28.4± 13.0

Matlab “FindDe-

lay”

Source Signal 1.5 - 3.25 6.50± 40.0 0.797± 41.1 38.7± 48.0

Matlab “FindDe-

lay”

Source Signal 1.5 - 5.0 11.1± 11.4 2.70± 16.3 23.1± 8.42

* TMHE := Truncated Mean Hydrophone Error
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5.4. GCC-PHAT Method

5.4 GCC-PHAT Method

The Generalized Cross Correlation (GCC) method was developed to be an improvement

on the standard cross-correlation method for estimating time delays (Knapp and Carter, 1976).

It involves including a weighting term in frequency space, or a processor, in the standard

cross-correlation. The processor can be chosen in any number of ways to highlight desired

properties of the input signals. As this weighting term is typically described in frequency space,

to express the modification I start by writing the definition of the cross-correlation, Equation

5.15, for the signals as functions of frequency rather than time (where again the Fourier

transform into frequency space is denoted by F ). Incidentally, implementing the standard

cross-correlation in frequency space is one way of performing the circular cross-correlation

mentioned last section.

(r
i

⇤ r
j

)[⌧ ] := F�1{F{r
i

[t]}⇤ · F{r
j

[t]}} (5.13)

where ⇤ indicates the complex conjugate, and we remember r
i

(t) and r
j

(t) are signals

received by hydrophones i and j.

We define the GCC for r
i

(t) and r
j

(t) as follows:

GCC
ri,rj [⌧ ] := F�1{ [f ] · F{r

i

[t]}⇤ · F{r
j

[t]}} (5.14)

where  [f ] is the processor or weighting function of interest.

The Generalized Cross Correlation with Phase Transform (GCC-PHAT) method gives a

particular form to the processor:

 [f ] :=
1

|F{r
i

[t]}⇤ · F{r
j

[t]}| (5.15)

The e↵ect of this processor is to equalize the gains of all cross-frequency bands in order

to emphasize the phase information of the signals, which contains information about the

signals’ relative delay. In theory, the desired delay will appear in the GCC-PHAT series
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as a sharp, narrow peak, and literature suggests that the first incident peak appears more

robustly than the secondary peaks characteristic for signals from reverberant environments

(Van Den Broeck et al., 2013).

For the same filtered hydrophone signals used in Figure 5.3 for an example of the standard

cross-correlation method, an example of the GCC-PHAT method is plotted in Figure 5.5.

Now there is only one prominent peak, rising to an amplitude of 1.0, and numerous small

peaks magnitudes smaller, between 0.005 and 0.01. In this case, the presence of a single

prominent peak is deceptive, however: the predicted signal delay is 7.9 milliseconds (˜12

meters) away, near one of the smaller peaks. In this case, GCC-PHAT performed worse than

the standard cross-correlation method.
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5.4. GCC-PHAT Method

(a) Entire GCC-PHAT for same signals as Figure 5.3. The blue line, part of the

trace, indicates the global maximum and predicted shfit; it reaches an amplitude

of 1.0. The yellow line is an estimation of the real shift.

(b) Zoomed version of above.

Figure 5.5: GCC-PHAT of Two Filtered Hydrophone Signals
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Table 5.3: Performance of GCC-PHAT Methods in Estimation of Arrival Time

Delays

Method Reference Signal Bandpass Range

(kHz)

Mean of Abs.

of Deviations

(ms)

Mean of Devi-

ations (ms)

p (Mean

Square of

TMHE) (ms)

GCC-PHAT Hydro. 1 1.5 - 3.25 3.10± 2.20 �0.273± 3.90 6.48± 2.29

GCC-PHAT Hydro. 1 1.5 - 5.0 3.10± 2.20 �0.273± 3.90 6.48± 2.29

GCC-PHAT Source Signal 1.5 - 3.25 239± 354 �143± 422 577± 289

GCC-PHAT Source Signal 1.5 - 5.0 227± 344 143± 405 568± 304

* TMHE := Truncated Mean Hydrophone Error

The results of the GCC-PHAT method for all signals are in Table 5.3. The GCC-PHAT

method using the first hydrophone as reference is the best-performing method thus far, with

approximately 3.1 millisecond error (˜4.6 meters). However, this will still prove insu�cient

for the purposes of geometric sound source localization.

93



5.5. Spectrographic Cross-Correlation Method

5.5 Spectrographic Cross-Correlation Method

One method that follows from the standard cross-correlation peak-finding method for

two signals is a two-dimensional cross-correlation peak finding-method performed on the

signals’ spectrograms. While not commonly used, this method has been used for time-delay

estimation of bowhead whale calls (Mellinger and Clark, 2000). There are clear disadvantages

to the method: phase information is lost in the construction of the spectrogram, additionally

time is coarse-grained. Nevertheless, the method is simple to implement, and it is conceivable

that the method’s modest insensitivity to shifts in frequency would confer it some advantage.

The largest window deemed reasonable for estimating time delay was 64 samples, cor-

responding to 1/3 milliseconds or ˜0.5 meters. A window size of 32 samples was also

evaluated.

A plot of the spectrographic cross-correlation for the same two signals used in the last

two sections is shown Figure 5.6. The error is greater than 5 milliseconds or ˜7.5 meters.

The performance of the method across all samples is tabulated in Table 5.4, and suggests

that this method is no more reliable than those already considered.
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5.5. Spectrographic Cross-Correlation Method

(a) 2D cross-correlation of spectrograms belonging to the same signals used for

Figure 5.3. The heat map is in normalized units of amplitude cross-correlation.

The red line indicates the global maximum and predicted shift; the yellow line

is an estimation of the real shift. The error is 2.86 milliseconds (˜4.3 meters)

(b) Zoomed version of above.

Figure 5.6: 2D Cross-Correlation of Two Signals’ 32-Sample Spectrograms
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Table 5.4: Performance of Spectrographic Cross-Correlation Methods in Estima-

tion of Time Delays

Method Reference Signal Bandpass Range

(kHz)

Mean of Abs.

of Deviations

(ms)

Mean of Devi-

ations (ms)

p (Mean

Square of

TMHE) (ms)

32-Sample

Spec. Cross-

Correlation

Hydro. 1 1.5 - 3.25 4.90± 28.7 �0.648± 29.4 17.2± 18.6

32-Sample

Spec. Cross-

Correlation

Hydro. 1 1.5 - 5.0 5.90± 6.10 �0.939± 8.8 13.2± 5.86

32-Sample

Spec. Cross-

Correlation

Source Signal 1.5 - 3.25 10.7± 65.5 �1.10± 68.4 64.0± 64.8

32-Sample

Spec. Cross-

Correlation

Source Signal 1.5 - 5.0 22.5± 45.3 8.70± 51.6 54.8± 37.4

64-Sample

Spec. Cross-

Correlation

Hydro. 1 1.5 - 3.25 5.10± 29.2 �0.383± 30.0 17.7± 18.8

64-Sample

Spec. Cross-

Correlation

Hydro. 1 1.5 - 5.0 5.80± 6.80 �1.00± 9.40 13.5± 6.78

64-Sample

Spec. Cross-

Correlation

Source Signal 1.5 - 3.25 12.5± 59.9 �1.50± 63.3 70.7± 72.8

64-Sample

Spec. Cross-

Correlation

Source Signal 1.5 - 5.0 29.7± 51.5 11.0± 60.7 73.5± 52.9

* TMHE := Truncated Mean Hydrophone Error

* TMSE := Truncated Mean Sample Error
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Chapter 6

Sound Localization

6.1 Introduction

After obtaining estimations of the time-di↵erences-of-arrival (TDOA’s) of a whistle for the

system’s sixteen hydrophones, the subject of the previous chapter, sound source localization

can be performed for the ultimate purpose of sound attribution. The standard method of

obtaining an origin point with TDOA’s will be presented in the next section.

However, though this method was successfully applied in Section 4.4 to localize the impulse

response functions obtained from the pseudo-white noise calibration data to demonstrate the

system’s basic functionality, a rigorous analysis of the TDOA method’s performance on tonal

sounds and/or real whistles will not be included here: it was quickly realized that the errors

associated with the estimated TDOA’s for these sounds prevented me from obtaining even

approximate whistle source locations, and plots analogous to the series in Figure 4.4 were

found not to be meaningful.

Considering the high degree of failure of this first TDOA-based localization method,

rooted in estimations of the TDOA’s known to be inaccurate, I did not think it was opti-

mally productive to implement additional methods of explicitly TDOA-based sound source

localization. Instead, I decided to pursue a data-driven approach to sound source localization
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by building a dataset of recordings of tonal sounds played in the aquarium EP at known

locations, and by using machine prediction to distinguish among sounds played at the di↵erent

locations. The same machine prediction scheme thus built might also be e↵ective for dolphin

whistles recorded from arbitrary locations in the pool. The details of this approach occupy

the majority of this chapter.

6.2 Spherical Interpolation

Spherical interpolation is arguably the standard method for solving for a sound source

position from a set of estimated TDOA’s, beamforming methods aside. The proper derivation

begins with explicitly introducing and subsequently minimizing the error in a geometric

source range estimation based on of the estimated TDOA’s. The optimization problem

thus obtained is a di�cult nonlinear, non-convex minimization problem in the unknown

source position. While brute-force iterative techniques exist for solving it, they are in general

computationally expensive, require a good estimation of the source position, and in general

cannot guarantee convergence (Li et al., 2016). One such method was implemented for the

current work with less success than the spherical interpolation method (Li et al., 2014).

Seemingly more common approaches to the minimization problem, including the spherical

interpolation method, are based on eliminating the problem’s nonlinear dependence on the

unknown source position (Li et al., 2016; Smith and Abel, 1987b; Spiesberger, 1999). The

spherical interpolation method is representative of these methods and has been suggested

to be the most robust to noise, and can be proven optimal (i.e., to represent a maximum

likelihood estimation) given that the estimated error in the TDOA’s is Gaussian (Li et al.,

2016; Smith and Abel, 1987a,b). Below I present a simplified derivation of the spherical

interpolation technique adapted from Zimmer (2011).

The problem is phrased as it was in Section 2.2, where optimal sensor placement was

discussed. Given that a sound is generated at time t0 from the source point s := (x
s

, y
s

, z
s

) 2
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R3 and is detected by M hydrophones h := [h1,h2, ...,hM = (x
M

, y
M

, z
M

)] 2 R3⇥M , we are

interested in recovering s. While t0 is unknown, we have knowledge of the time-di↵erence-of-

arrivals (TDOA’s) between hi and hj , denoted T
ij

.

Again we consider the distance or range of the source from each hydrophone, d
i

:= ||hi�s||

, which can be written as the M equations:

d
i

2 = (x
i

� x
s

)2 + (y
i

� y
s

)2 + (z
i

� z
s

)2 (6.1)

Let h1 be defined as the reference hydrophone. Noting that range is a one-dimensional

measure of radial distance from the source, we can write the range of all hydrophones in

terms of d1 and the range di↵erences, d
1i

:= d
i

� d
1

:

d
i

= d
1

+ d
1i

(6.2)

The motivation for this is that, while the d
i

’s are unknown, the d
1i

’s can be written in

terms of the TDOA’s:

d1i = cT1i (6.3)

where c is speed of sound in water.

We can rewrite Equation 6.1 in terms of Equation 6.2 for the reference hydrophone and

the other hydrophones:

d
1

2 = x2
1 � 2x1xs

+ x2
s

+ y21 � 2y1ys + y2
s

+ z21 � 2z1zs + z2
s

(6.4)

d
1

2 + 2d
1

d
1i

+ d
1i

2 = x2
i

� 2x
i

x
s

+ x2
s

+ y2
i

� 2y
i

y
s

+ y2
s

+ z2
i

� 2z
i

z
s

+ z2
s

(6.5)

where i8[2, 3, ...,M ].

Equation 6.5 constitutes a set of nonlinear, hyperbolic equations in the four unknowns,

d
1

2, x
s

2, y
s

2, and z
s

2. There is more than one approach to solving them. The spherical

interpolation approach is characterized by the next step, which eliminates quadratics in the

unknowns. We subtract Equation 6.4 from Equation 6.5 to obtain:

2d
1

d
1i

+ d
1i

2 = x2
i

� x2
1 � 2(x

i

� x1)xs

+ y2
i

� y21 � 2(y
i

� y1)ys + z2
i

� z21 � 2(z
i

� z1)zs (6.6)
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where i8[2, 3, ...,M ].

We can write Equation 6.6 in the matrix form b = Ax, where

b =

2

66666664

(x2
2 � x2

1) + (y22 � y21) + (z22 � z21)� d
1,2

2

(x2
3 � x2

1) + (y23 � y21) + (z23 � z21)� d
1,3

2

...

(x2
M

� x2
1) + (y2

M

� y21) + (z2
M

� z21)� d
1,M

2

3

77777775

(6.7)

A = 2

2

66666664

d
1,2

(x2 � x1) (y2 � y1) (z2 � z1)

d
1,3

(x3 � x1) (y3 � y1) (z3 � z1)

...
...

...
...

d
1,M

(x
M

� x1) (y
M

� y1) (z
M

� z1)

3

77777775

(6.8)

x =

2

66666664

d
1

x
s

y
s

z
s

3

77777775

(6.9)

For five hydrophones (M = 5) this equation can be solved exactly as simply x = A

�1
b, and

for more hydrophones the standard least-mean-square solution applies:

x = (AT

A)�1
A

T

b (6.10)

Note that A must be invertible and its determinant never zero, meaning that the hy-

drophones should not share one coordinate component (e.g., be at the same depth), a condition

that our own sensors narrowly avoid.

As an aside, note that the speed of sound in water, c, is is a function of physical-chemical

properties of the water. Various equations for calculating the speed of sound in water have

been proposed based on various data and constraints: some are based on precise data from

water held in laboratory chambers, some on oceanographic data, some have been simplified for

field computation, some are complex, and some are based on more dubious assumptions (e.g.,
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6.2. Spherical Interpolation

regarding the conversion between pressure and depth, or for seawater, on suspect calculations

of the speed of sound in low-saline water) than others. The physical-chemical variables

common to them all are salinity, temperature, and pressure (Leroy et al., 2008).

To my knowledge, no equation has been developed specifically to calculate the speed

of sound in saline aquaria. As it seems that the validity of the di↵erent equations vary

considerably with water salinity, I chose to use an equation developed to calculate the speed

of sound in oceans, which have salinities in a range of ˜30-40 ppt, consistent with the mean

salinity of the the National Aquarium’s EP, 31.50 ppt (Leroy et al., 2008). The one chosen,

the Del Grosso equation, is one of the “complicated” variety of equations – it is a large

polynomial of temperature, salinity and pressure and will not be stated here – and is reported

by various sources to be the most accurate (Del Grosso, 1974; Spiesberger and Fristrup,

1990; Spiesberger and Metzger, 1991). For the EP mean salinity of 31.50 ppt and mean

temperature of 26.04 °C (numbers provided by National Aquarium life support personnel),

and a mid-pool pressure calculated to be 30.23 kPa (excluding atmospheric pressure), the

speed of sound of 5030 ft/s has been calculated (Leroy and Parthiot, 1998).

Note that a 1.0 °C change in temperature corresponds to a roughly 2.5 ft/s change in

the speed of sound and that a 30 kPa change in pressure (corresponding to moving to the

surface or to the pool floor) corresponds to a 0.050 ft/s change in the speed of sound. Over

one hundred feet (approximately the maximum hydrophone separation) a 2.5 ft/s change in

the speed of sound can alter a TDOA by up to 10.0⇥ 10�3 milliseconds, which is significantly

less than the currently observed error in TDOA estimation, over 5 milliseconds. However,

there is room for further investigation of the amount of temperature fluctuation in the pool

and its e↵ect on the speed of sound.

It is also reasonable to ask whether dispersion – the phenomenon of di↵erent frequencies

of sound traveling at di↵erent velocities – is significant in the aquarium. As the e↵ects

of dispersion are correlated with the distance a signal travels, along with the e↵ects of

amplitude attenuation and multipath propagation it could cause di↵erent hydrophones
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to receive di↵erent versions of the same whistle, possibly a↵ecting the performance of

TDOA estimators. Moreover, along with amplitude attenuation and multipath propagation,

dispersion could represent a source of information apart from TDOA’s that could be used for

range estimation. However, none of the authors of the speed of sound equations considered

have taken dispersion into account, though they sometimes address it. Even over large

distances (e.g., miles), dispersion has been shown to a↵ect signals at around the same level

as sensor error (Dushaw et al., 1993; Horton Sr., 1974). One study found that between 500

and 1500 Hertz, dispersion e↵ects a di↵erence in velocity on the order of one part in 100,000,

which is comfortably insignificant (McCubbin Jr., 1954). Thus, for our purposes dispersion is

not taken into account.

6.3 Prediction of Tonal Sound Locations: Building a

Training Set

My proposal to perform sound source localization via machine learning classification

involved two major steps: creating a data set on which to train the classifier, and build-

ing/evaluating the classifier itself. The purpose of the training set is to provide the classifier

with an exhaustive supply of “examples” of the problem to be solved, which in this case is the

association of 16 hydrophone signal samples of a dolphin whistle with its 3-dimensional point

of origin in the EP. The ideal training set would consist of thousands (or more!) of di↵erent,

real dolphin whistles – representative of the ones we intend to localize – each recorded from

all points on a measured, rectangular, three-dimensional grid in the pool with inter-point

spacing no greater than distance we might expect our hydrophones able to resolve (for a 192

kHz sampling rate, perhaps a hundredth of a meter). Of course, building such a training set

would be impossible. My goal in constructing the actual training set was to come as close to

this ideal as possible given the constraints.

First, I could not use real whistles from the dolphins themselves. An automated system for
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extracting and matching real dolphin whistles with the dolphins’ coordinates was underway

but not yet adequate, and, even if it were, the dolphins’ natural swimming and vocalization

habits did not guarantee a readily accessible, geometrically distributed set of whistles like

what was described above – months if not years of recordings might be necessary. Thus, I

would need to deploy a speaker and play sounds using methodology previously described in

Section 4.2.

Second, I was not allowed to play the resident dolphins’ whistles back to them, or whistles

too closely resembling real bottlenose dolphin whistles. This meant that I needed to play

artificial tonal sounds that I felt somehow representative of the pools’ bottlenose dolphins

repertoires.

Third, and perhaps most significantly, I was severely constrained in the number of sounds

I could play, limiting both the number (and thus the variety) of sounds played at a single

location and the total number of locations at which sounds were played. The reasons for this

included the aquarium’s strict limit of 1.5-hours/day of experimentation time in the EP, and

the time constraints of the 4-person research team that assisted me along with the NA sta↵.

Obtaining the data was a complex, multi-person operation.

Based on the above, I settled to play 127 sounds at each of 14 locations inside the EP,

which, with setup time, I calculated to fill the 3 hours of time allotted to us split between two

consecutive days. Note that, while the original intention was to play sounds on a dense grid

of points spanning the EP to e↵ectively perform true 3-dimensional sound localization, the

reduction of sampling points to a mere 14 locations meant that this would not be possible,

and that even a successful classifier might only be able to distinguish among real dolphin

whistles emitted at these particular places; the extent generalizability of the classifier to

elsewhere in the pool became another unknown. Note that, under these circumstances, it

might seem reasonable to re-phrase the problem in terms of regression rather classification,

where 3D position was to be predicted rather than one of a non-ordinal set of sample points.

However, given the complexity of reverberative e↵ects and my inability to play real dolphin
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Table 6.1: Parameter Set of Training Set Sinusoids

Parameter Value Set

Duration (sec) [0.3, 1]

Number of Cycles [1, 2 ]

Center Frequency (Hz) [6000, 10500]

Cycle Amplitude (Hz) [2000, 5000]

Phase (rad) [�⇡

2 ,
⇡

2 ]

Power Onset/Decay Rate * [0.1, 0.25]

* Values indicate fraction of signal length over which a sin2 rise/falls occurs.

whistles, I decided to emphasize predictor generalizability in whistle space rather than real

space in the training set, and not surprisingly it would become clear that 14 distinct spatial

points were insu�cient for regression. From this point forward the classification project

necessarily became more a proof of concept than a practical attempt at achieving good sound

localization.

The sounds used were sinusoids in time-frequency space, resembling whistles from the

dolphin species Stenella frontalis, whose whistles were deemed permissible to play, as well as

sounds from an “o↵-sinusoid” family. The latter family is characterized by expressions of the

form arcsin(m·sin(2⇡f))
arcsin(2⇡f) that, for an appropriate choice of frequencies, take the appearance of

stacked, rounded triangular traces in time-frequency space, adjusted by the parameter m.

Apart from resembling S. frontalis whistles, another reason to play sinusoid sounds was that

it was straightforward to systematically explore the typical parameter space that researchers

use to characterize dolphin whistles. The parameter space used is described in Table 6.1.

The 14 chosen locations in the EP were the same for which impulse response functions

were found earlier, on a 3 x 5 x 2 cross in the pool shown in Figure 4.1a. Sounds were played

at a regular 4-second interval, set precisely to the computer system clock, for ease of post-hoc

extraction. However, lag was created somewhere in the computer-audio-interface-speaker

104



6.4. Classifying Tonal Sound Locations: Feature Selection

pipeline. As preliminary tests suggested this might occur, all signals were prepended with a

flat 3 kHz tag, whose onsets I tracked across all extracted sounds; these onsets were fit to a

straight line whose coe�cients I used to compensate for this drift.

As an aside, it is reasonable to ask whether actual whistle (or whistle-like) training sounds

are necessary for building a successful classifier for whistles. More specifically, perhaps

the training sounds could be samples from a “whistle eigenspace.” Such a space might be

constructed, for instance, by performing principal component analysis (PCA) on a set of

whistles. However, if real whistles (in time space) were used for PCA, they would first need to

be be made of equal length, using a transformation process (such as dynamic time warping)

that could not guarantee the conservation of relevant signal features. If a set of artificial

whistles constructed to be of identical length were used for PCA, it would remain unclear

whether their set of eigenvectors, nonlinearly transformed by their transit through the speaker-

water-hydrophone system, would be representative of the original whistles transformed by

the same transit (so that we could still claim to have a whistle eigenspace). Performing a

PCA of whistles in frequency space is another possibility that could be examined, but would

certainly bring its own uncertainties. Ultimately, given the time constraints, the conservative

method of using a training set composed of whistle-like sounds seemed best.

6.4 Classifying Tonal Sound Locations: Feature

Selection

Before continuing, I will define classification and classifier training more clearly. Broadly,

classification is the process of predicting some unknown, discrete, non-ordinal characteristic

of a data sample (such as “season,” “car manufacturer,” or “is-yellow”), called the label or

class, from an array of other, known characteristics of that same data sample – which in

general may be ordinal or not, discrete or continuous – called the features. The classifier is

the mathematical-statistical tool that performs the mapping from the feature array to the
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class for a particular data sample. Many forms of classifier exist, having di↵erent strengths

and weaknesses. Constructing the classifier, or training it, requires a large set of data samples

for which both the features and classes are known; this set is called the training set. The

success of a classifier can be evaluated by using it to predict the classes of a set of data

samples for which both the features and labels are known, but which were not part of the

training set; this is the test set.

In general, the two most significant decisions that must be made during classifier construc-

tion are the selection of the form of the classifier and the selection of the features that it relies

on for prediction – these are both topics of immense interest within the machine learning

field. The second decision is the concern of this section. A good set of initial features is

computationally tractable and includes all the information that the classifier needs to perform

prediction successfully, contained no more implicitly than the classifier is capable of using.

For the current problem, the feature set must be drawn from 16 hydrophone recordings of

a whistle-like sound. Naively, one might suggest that the feature set simply include all values

of the signal waveforms. However, this suggestion can be quickly dismissed by noting that

this would require that the feature set contain a computationally impractical 192000 ⇤ 16 ⇤ 2

values – downsampling the signal from 192 kHz is not an option given the small size of the

expected time delays – and that across data samples the signals would likely need to be

temporally aligned in some precise and meaningful way.

I decided on the following feature set. First, I included the TDOA’s from the best-

performing method from Chapter 5. While these TDOA’s were not su�ciently accurate to

be used for localization by spherical interpolation, they still potentially included information

valuable to and not otherwise accessible to a classifier. Next, I included the normalized cross-

correlation series between all pairs of hydrophone signals. Apart from including information

that was potentially unavailable to the classifier otherwise, the advantages of using the cross-

correlations over the raw signals was two-fold: first, the cross-correlation series are perfectly

temporally aligned across all data samples, and second, while keeping the hydrophones’
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192 kHz sampling rate I could make the series manageable in length by excluding all cross-

correlation terms that corresponded to time-shifts between hydrophones that are larger than

the largest possible signal delay. Lastly, I included the discrete Fourier transforms of all

hydrophone signals, again truncated to exclude frequencies outside the range of interest.

These series were again insensitive to time shifts among samples, and potentially reflected

frequency-dependent dispersion and absorption information about the signals’ paths.

The total feature set consisted of 1,331,887 one-dimensional numerical features, across

1,605 samples in the training set and 178 (a random 10% of the total) in the test set,

which would only be used for classifier evaluation. At this size the feature set was already

computationally cumbersome. In fact, preliminary investigations using basic decision trees

(to be discussed), one of the only classifier types capable of handling the data at this stage,

suggested that the discrete Fourier transforms of the signals did not a↵ect classification

performance, and I took the opportunity to discard them, reducing the feature set to 897,891

numerical features. The remaining feature set was still computationally troublesome but

manageable.

6.5 Classifying Tonal Sound Locations: Random

Forest Classification

At this point, I began training a random forest classifier, which is an ensemble of decision

tree classifiers. They will be described in turn.

A decision tree is a powerful type of nonlinear, multi-class classifier that is constructed by

applying simple construction rules to a training set and that produces classifications based

on a transparent set of decisions; in many ways it is more suited to a rigorous understanding

of data than more opaque classifiers that have recently enjoyed celebrity for their raw power,

namely those based on neural networks. The first algorithm for Classification and Regression

Trees (CART) was introduced by Leo Breiman et al. in 1984 (Breiman et al., 1984).
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A generic, binary decision tree algorithm proceeds as follows. We start with the full

training set at the top of the tree, the so called root node. We seek to split the samples in the

training set between two lower child nodes. We perform the split by selecting a separation

point in a single feature. For instance, if the TDOA between hydrophone i and j is the chosen

feature, we might split all samples based on whether this value is above or below 1 millisecond

– splits in ordered features such as a TDOA, or any of the features in my data, will always

take the form of an inequality. The feature to split on and the location of the split are not

chosen arbitrarily. We seek the break point in the feature that will maximize the di↵erence in

class distribution, or inhomogeneity, between samples in the two child nodes. There is not a

single way to define the inhomogeneity, and the choice of this definition is one way in which

decision tree algorithms can di↵er. The definition used in this thesis and that will be stated

here is based on the Gini Diversity index. Let S denote a set of training samples where each

sample s 2 S possesses a class j 2 1, 2, ..., J . If p
i

(S) denotes the proportion of samples in S

belonging to class j (alternatively, the probability of a random sample possessing class j),

the Gini Diversity of S is defined as:

G(S) :=
JX

j=1

p
i

(S)(1� p
i

(S)) = 1�
JX

j=1

p
i

(S)2 (6.11)

In general, G(S) will be larger the less homogeneous the set S is. Let us split set S into

sets A(c) and B(c) according to some splitting rule (recall: an inequality on a single feature)

c 2 C, where C is the set of all possible splits. We define the ideal splitting rule c
best

as

follows:

c
best

:= argmax
c2C

{G(S)� |A(c)|
|S| G(A(c))� |B(c)|

|S| G(B(c))} (6.12)

where |A|, |B|, and |S| are the number of samples in sets A, B, and S. In essence, the best

split is that which produces two child sample sets A and B that jointly possess as small values

for Gini Diversity as possible, and therefore as much inhomogeneity (as it is here defined) as

possible.

After the best split is chosen at the parent node, producing two child nodes (connected by
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branches to the parent node), the above split process is repeated at the two child nodes. This

continues at each successive child until some termination condition is met, naively that all

samples in a child node are of the same class. A node without children is called a leaf. Note

that it is not necessarily optimal to continue the splitting process so that all leaves contain

samples from a single class, as this often means that noise in the training set, which can not

be expected to generalize to the test set, was fit. This creates a classifier said to have high

variance. Various other termination conditions exist that prevent such overfitting.

A random forest classifier is a classifier constructed from many decision trees. It was

developed to address weaknesses in the solitary decision tree classifier, particularly its

tendency towards error resulting from high variance, noted above. The random forest reduces

variance by diluting the erroneous, noise-based classifications of any one decision tree by

polling many trees. The polling process can be as simple as taking a majority vote of the

classifications of the individual classifiers (similarly, the random forest’s classification error

can be straightforwardly characterized based on the proportion of dissenting trees). Since

a single training set usually lends itself to a single decision tree classifier, the many unique

decision trees composing a random forest are constructed by generating many training sets

from one using a technique called Bagging (for Bootstrap aggregating). Bagging creates

random child training sets by randomly sampling the original set (with replacement). The

random forest classifier further diversifies its trees by demanding that every feature split of

every decision tree be constrained to a random subset of features. Given n total features, a

random subset of
p
n is usually used at each split.

I trained a generic random forest on the training set of 897,891 features including TDOA’s

and truncated cross-correlations. In general, the more decision trees added to the random

forest, the more accurate and less prone to overfitting it is. Over five days I constructed a

1,400-tree random forest from the training data (after 1,400 trees I encountered significant

computational slow-down), where each tree was trained on a random subset of 75% of the

total training set of 1,605 samples and at each branch one of
p
897, 891 random features
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6.5. Classifying Tonal Sound Locations: Random Forest Classification

Figure 6.1: Full-Feature Random Forest Classification Growth Error The out-of-

bag classification error of a random forest trained on the complete feature set (all TDOA and

cross-correlation pairs) as decision trees are added. Note the real peak below 5 trees is at an

error of 0.6.

was split on. Surprisingly, the random forest achieved 100% classification accuracy on the

test set. Figure 6.1 shows the forest’s improvement in classification as trees were added; it

shows a steep increase in classification accuracy up to 20 trees, and perfect classification at

approximately 180 trees. This is a significant result and constitutes proof that classification

is a promising avenue for whistle localization, assuming the set of artificial whistle-like sounds

suitably sample the space of real whistles, which remains to be seen.

Of course, one might ask how the classifier achieved this success. Because this random

forest polls 1,400 individual decision tree classifiers to reach its decision, its decision process is
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6.5. Classifying Tonal Sound Locations: Random Forest Classification

somewhat opaque, particularly given that even that the logic of a “decision tree,” while trans-

parent, does not necessarily lend itself to intuition. One way of gaining some understanding

of the classifier is by assessing feature importance, or the relative influence of each feature on

total classification success. The random forest is regarded for its strength at assessing feature

importance, owing to the fact that the random bagging and feature sub-selection methods suit

them for generating statistics from a single training and feature set. The measure of feature

importance used here is termed delta error. To calculate the delta error, we first evaluate the

change in class-prediction accuracy of a single decision tree based on the out-of-bag samples –

the training samples that were not randomly selected during the bagging process for training

that tree – when the values of a particular feature are permuted across all the samples. This

is done for every feature in the tree to obtain an error value for each, and feature values

thus obtained are averaged across all decision trees within the random forest. The larger a

feature’s delta error, the more important it is for successful classification.

In the random forest generated, 66,384 features possess importance greater than zero. The

full plot can be seen in Figure 6.2. While it should be expected that not all of the features

were sampled in the construction of the forest, and that a random subset of features have

been inappropriately assigned zero importance, the forest’s classification success combined

with the expectation that the cross-correlation arrays carry redundant information suggest

that these features are su�cient for consideration.

I used feature importance to ask whether the random forest prioritizes features representing

particular inter-array measurements, separately for TDOA’s and cross-correlations, and

whether the random forest prioritizes features representing certain delays among the cross-

correlations, potentially as a function of which pair of panels the cross-correlated signals

belong to.

With regards to whether the random forest prioritizes features representing particular

inter-array di↵erence measurements, refer to Figure 6.3. One might expect that features

corresponding to TDOA’s and cross-correlations between hydrophones in di↵erent arrays
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6.5. Classifying Tonal Sound Locations: Random Forest Classification

Figure 6.2: Histogram of Random-Forest-Generated Feature Importances 1,000-

bin histogram of Random-Forest-generated feature importances, as measured by delta error,

explained in the text. Note that there is a peak at 0 of 66,384 features, and a peak at 0.0267

of 59,145 features.

would have higher importance than features corresponding to TDOA’s and cross-correlations

between hydrophones in the same arrays, as the former reflect larger delay times that are

less susceptible to destruction by noise. However, only with respect to the TDOA’s do we

find cross-array importances more emphasized, particularly between hydrophone arrays on

opposite sides of the pool’s XY vertical midline, which seems reasonable considering that

their greater displacements (as compared with the vertical pairs) generally lead to greater

TDOA’s. Unexpectedly, TDOA’s between hydrophones belonging to di↵erent arrays on the

same side of the pool (1 and 2, 3 and 4) are even less emphasized than TDOA’s between
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6.5. Classifying Tonal Sound Locations: Random Forest Classification

hydrophones in the same arrays. For the cross-correlation features, no obvious pattern

exists between hydrophone array location and feature importance. That hydrophone/panel

pair importances are not intuitive might be because the fourteen testing locations depend

significantly on di↵erent array comparisons. However, for both TDOA’s and cross-correlation

features, we would trivially expect symmetry in all four plots about the upward diagonal

owing to the approximate symmetry of the arrays and the symmetry of testing locations

across the XY vertical, however this is not observed. Together with the importance of array

auto-correlations, the meaning of the feature importances remains unclear. It is possible they

are partly artifacts of the random forest creation process’ random feature selection.

With regards to whether the random forest is prioritizing features representing certain

time-delays among the cross-correlations, refer to Figure ??. The importances of features

corresponding to every cross-correlation delay time were averaged, across all hydrophone

pairs (plots not shown) and across groups of hydrophone pairs corresponding to comparisons

between di↵erent hydrophone arrays. For the latter groupings, the weighted means and

standard deviations of importances across all delay times were computed for each array pair

(delay times weighted by mean importance). Across all hydrophone pairs no concentration

of feature importance among time delays was discerned, and among groups of hydrophone

pairs belonging to di↵erent array pairs no concentration of feature importances among time

delays – or di↵erences in these concentrations – was discerned. Speaking to the latter: every

weighted mean time delay importance is between approximately -0.5 and 0 milliseconds with

standard deviations on the order of 10 milliseconds, almost a third of the length of the entire

cross-correlation. Nevertheless, it is not necessarily unexpected that feature importances

are not concentrated, as for even a single array pair the expected peak indicating the first

incidence arrival might vary by as much as 20 milliseconds among the testing locations (indeed,

the cross-correlation window was chosen specifically to cover this range). It is possible that a

deeper analysis looking for clustering of feature importances around the expected peaks in

the cross-correlations (corresponding to expected TDOA’s) for every panel pair for every test
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6.5. Classifying Tonal Sound Locations: Random Forest Classification

Figure 6.3: Cross-Hydrophone and Cross-Array Classification Importances Clas-

sification importance values across hydrophone and hydrophone array pairs are formed by

summing the importances (delta error) of features across hydrophone pairs, and subsequently

averaging hydrophone pair sums across array pairs. a: Cross-hydrophone importances for

cross-correlation features. Hydrophones belonging to common panels (1-4, 5-8, 9-12, 13-16)

are grouped by red boxes. b: Cross-array importances for cross-correlation features. Facing

the pool from the audience area, panels increase in number from from left to right. c:

Cross-hydrophone importances for TDOA features. d: Cross-array importances for TDOA

features.
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6.5. Classifying Tonal Sound Locations: Random Forest Classification

(a) (b)

(c) (d)

Figure 6.3
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6.5. Classifying Tonal Sound Locations: Random Forest Classification

site would be successful.

Similar plots were created using the first principal components obtained via a principal

components analysis of the training set in place of delta error. Rather than representing a

feature’s direct importance to classification, a high-magnitude feature in a principal component

vector reflects that feature’s tendency to co-vary with other high-magnitude features; di↵erent

sets of co-varying features (or eigenvectors) account for di↵erent amounts of variation in

the overall data. One might expect features representing cross-panel di↵erences to account

for more overall variance in the feature sets. However, this was not found. The plots are

numerous and are excluded here.

While it is clear that a large random forest classifier trained on the full feature set consisting

of all hydrophone cross-correlations and estimated TDOA’s can obtain high classification

accuracy, the lack of intuition behind the feature importances compelled me to find an

e↵ective classifier on a minimal feature set; this minimal feature set might lend itself to

intuition more than the full feature set examined above. Rather than manually selecting an

arbitrary number of features based on the importances already obtained, I found a complete

minimal feature set by training a classifier on the full feature set that naturally performs a

high degree of feature selection. A stronger classifier could then be trained on the features

selected.

Towards this end, I trained a sparse decision tree classifier on all features of the full

training set. The resulting decision tree achieved 96.63% classification accuracy on the test

set using only 22 of the original 897,871 features. I then trained a random forest on the

same features, achieving 99.69% out-of-bag classification accuracy and 98.88% classification

accuracy on the test set. The delta error-based feature importances for the 22 features were

then mapped back to hydrophone and hydrophone array pairs as was done previously; these

plots are shown in Figure 6.4.

With respect to the cross-correlation features of the minimal classifier, Figure 6.4 shows

that, rather being concentrated to any one hydrophone or hydrophone array, the 13 selected
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6.5. Classifying Tonal Sound Locations: Random Forest Classification

Figure 6.4: Minimal Cross-Hydrophone and Cross-Array Classification Impor-

tances Classification importance values for minimal set of 22 features across hydrophone

and hydrophone array pairs are formed by summing the importances (delta error) of features

across hydrophone pairs, and subsequently averaging hydrophone pair sums across array pairs.

a: Cross-hydrophone importances for cross-correlation features. Hydrophones belonging to

common panels (1-4, 5-8, 9-12, 13-16) are grouped by red boxes. b: Cross-array importances

for cross-correlation features. Facing the pool from the panels increase in number from left

to right. c: Cross-hydrophone importances for TDOA features. d: Cross-array importances

for TDOA features.
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(a) (b)

(c) (d)

Figure 6.4
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6.5. Classifying Tonal Sound Locations: Random Forest Classification

features are spread across hydrophone and hydrophone array pairs, consistent with the

geometric expectation that the classifier’s implicit localization would require information from

a diverse and distant set of hydrophones. Curiously, only one feature involves hydrophones

in the fourth (furthest right) hydrophone array, and it involves an intra-array comparison.

As was the case for the full feature set, the general importance of intra-array features and

the lack of symmetry across the plots’ upward diagonal despite array and testing point

symmetry (across the pool XY vertical) remain unexpected, but in this case the latter might

be explained by the decision tree’s tendency towards feature spareness. The 9 TDOA features

of the minimal classifier are distributed among hydrophone and hydrophone array pairs much

as the cross-correlation features are. In fact, that a TDOA between a hydrophone in the first

array and every other array is used is strongly indicative that the classifier is performing

implicit localization. For both the cross-correlation and TDOA features, no pattern in the

specific importance values given to each feature is readily apparent.

All 13 selected cross-correlation features were averaged across their respective time-delay

positions, however no concentration was apparent; as for the full feature set, a comparison to

theoretically expected peaks for every array pair for every testing location might be required

to uncover a deeper intuition.
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6.5. Classifying Tonal Sound Locations: Random Forest Classification

Figure 6.5: Minimal Cross-Correlation Delay Classification Importance Classifica-

tion importance values across cross-correlation delays are formed by averaging the importances

(delta error) across corresponding features, for all hydrophone pairs.
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Chapter 7

Discussion, Future Directions

Presented in this thesis are the first step towards the completion an audiovisual system for

performing whistle attribution and general behavioral tracking for the seven dolphins residing

at Dolphin Discovery at the National Aquarium, Baltimore. While truly continuous, full-time

sound attribution would require audiovisual tracking of all dolphins across the facility’s three

primary sub-pools, the proposed system is aimed at continuous sound attribution for subsets

of the seven dolphins during the periods they reside in the facility’s primary pool, the exhibit

pool or EP. The two audiovisual tasks required for performing whistle attribution include

sound source localization and visual tracking of dolphins, both on a shared coordinate system.

This thesis presents installed hardware, software and general methodology that approaches

achievement of sound source localization, including evidence of this sub-system’s ability to

localize idealized sound sources and a proof of concept for using a machine classifier for

performing sound source localization for whistle-like sounds, as well as installed hardware

and early software that requires extension for the achievement of visual tracking of dolphins.

The completion of the sound attribution system in its entirety and, with it, the generation

of whistle-attributed behavioral data for the aquarium’s seven dolphins over months if not

years, would represent a unique accomplishment in the field of cetacean communication and

new access to questions about the distinctions between individual vocal repertoires and the
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existence of vocal exchange.

The core of the proposed sound source localization subsystem are four arrays of four

hydrophones distributed in an approximate “splay” configuration around the EP. After a two-

year process involving over one hundred planned and unplanned installations and removals,

several weeks of 24-hour monitoring periods, and two major and multiple minor redesigns,

four duplicates of the newest iteration of the array have been “permanently” installed for

almost one year; they have been proven suitably robust to corrosion, dolphins, and the

discerning eye of the National Aquarium exhibit sta↵. The four hydrophone arrays constitute

a theoretically minimum system for achieving two-dimensional sound localization using a

conventional time-delay-of-arrival (TDOA) treatment, shown in Section 4.4 by their ability

to localize idealized impulse response functions (IRF’s) to elliptical regions occupying less

than 1% of pool area/volume o↵set from the measured source points by less than 5 feet.

Nevertheless, while theoretically su�cient for sound localization, the system of hydrophone

arrays does possess room for improvement that might be addressed to reduce the observed

practical di�culties of localizing whistle-like sounds. Possible extensions of the hardware

include completion of my planned “mini-panels” for vertically spreading the four hydrophones

in the existing arrays, which would allow the system to perform a degree of vertical localization,

and in general the installation of more hydrophone arrays placed consistent with the principle

of maximizing the spread of the source-sensor direction vectors, discussed in Section 2.2.

While a solution for placing hydrophones deeper beneath the water surface than the length of

a hydrophone array (˜6’) would herald a substantial increase in sound localization capacity,

any re-design of the arrays would likely trigger higher stress levels in the National Aquarium’s

resident dolphins and require a lengthy desensitization period Section 2.2. Regardless of

the arrangement of hydrophones, the inter-hydrophone distance measurements necessary

for sound localization might be improved by using a more sophisticated system of “pings”

generated from the hydrophones themselves. The three scenarios for which I would expect

the system hardware to substantially improve in its capacity for sound localization without
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pushing against the constraints imposed by the National Aquarium include the discovery of

adequate contact microphones for recording whistles from the outside of the EP acrylic and

their deployment, the development of a beamforming algorithm Section 2.2 requiring two to

four localized hydrophone arrays (likely consisting of more than four hydrophones each) and

the arrays’ deployment, and the purchase and use of wearable hydrophone-recorder systems

Section 1.5.

Regarding the computational side of sound source localization, the present body of work

suggests that a conventional, geometric approach to localizing whistle-like sounds is inad-

equate given the available hardware and IRF data. Specifically, the process of estimating

time-di↵erences-of-arrival (TDOA’s) for geometric sound source localization has not been per-

formed successfully. The best-performing TDOA estimation method implemented, involving a

comparison of bandpass-filtered hydrophone signals using a General Cross-Correlation Phase

Transform (GCC-PHAT), produces TDOA’s with greater than ˜5 millisecond (˜7.5 meter)

error, and produces no meaningful spatial localization using a standard TDOA-based local-

ization algorithm, spherical interpolation Section 5.4. The failure of conventional approaches

to TDOA estimation is due to both whistles’ slow and variable onset above the acoustic

noise floor, which disturbs a conventional peak-finding approach to extracting time delays

based on the first incidences of received signals, and the overlap of many source signals in the

received signal as a result of multipath travel, which disturbs conventional cross-correlational

approaches to extracting time delays based on whole received signals. Improving the system’s

capacity for sound (and specifically whistle) source localization at the computational stage

would likely require coping with multipath e↵ects either explicitly or implicitly. Explicit

treatments have been proposed in the signal processing literature, in which the multipath

problem features prominently, which were not fully implemented and surveyed in favor of an

implicit machine learning treatment. Promising explicit treatments include those based on

acoustic tomography, specialized correlations, and multidimensional matched filtering (Bell

and Ewart, 1986; Spiesberger, 1998). Another explicit treatment might include using IRF’s
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to remove multipath, a topic discussed in Section 4.4.

A promising alternative to the explicit treatment of the multipath problem (as well as other

sources of complex noise) with conventional signal processing techniques, which tend to be

specific and can require a high level of expertise to choose among, is a machine learning-based

approach to sound localization, relying on training data consisting of representative sounds

played at known locations in the pool. Despite the di�culties associated with obtaining

these training data, this approach has been shown to be e↵ective for distinguishing artificial

whistle-like sounds among fourteen testing locations using machine classification. In particular,

the classifier can distinguish these sounds along the center XY vertical line of the EP, for

which even IRF’s could not be distinguished using spherical interpolation. Nevertheless, the

generalizability of the current training set is uncertain, both in regards to how representative

of real bottlenose dolphin whistles the training sounds are, and how close a source whistle –

real or artificial – must be to a training location to produce a reasonable classification. To be

more specific, the classifier’s probability of classifying an o↵-testing-point sound to the nearest

testing point or to another testing point as a function of its ranges to the various testing points

must be expected to be complicated and to require significant probing before the current

classifier might be used for practical signal localization. While a regression-based approach

to the prediction problem would be expected to provide more spatial generality, current data

have proven insu�cient for this approach, and in general we expect the regression problem

harder to solve well. Before addressing questions of the classifier’s generalizability directly,

it would seem reasonable to build a classifier or regressor on more training data covering

more points in both whistle and real space. With enough sounds played at enough locations,

the question of a classifier’s generalizability might not need to be addressed. Lacking real

dolphin whistles from known positions in the pool, the data currently available can be used to

address the classification’s approach generalizability in whistle space (and also real space) by

selectively excluding subsets of whistles from training; a thorough analysis of this sort could

not be prepared for this thesis. However, as noted above, securing these data is a complex,
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multi-person operation requiring a five-person team from our research sta↵ plus the help of

aquarium sta↵. Therefore, increasing the training set size is not expected to be logistically

easy. Perhaps a more e�cient set of training sounds, for instance reflecting a sampling

of a whistle eigenspace, might simplify the process. In any case, at this time attempts to

reverse-engineer the successful random forest classifier to inspire a non-data-driven solution

to the whistle localization problem have not been successful.

Aside from finalization of a method of whistle source localization, completion of the

full proposed system for whistle attribution would require the creation of dolphin-video-

tracking software paired with a reliable methodology for determining dolphin identity in

one or more frames for every unbroken video follow of a dolphin. Preliminary work using

the feed of the central overhead camera to achieve approximate 2-dimensional tracking

suggests that conventional object tracking methods, including background subtraction and

adaptive correlation filters, are significantly disrupted by sun glitter, which results in changing

regions of light and dark across the surface of the pool over the dolphins. Ongoing work

based on a large coarse-graining and dynamic thresholding of pool pixels might achieve

success. Otherwise, a brute-force approach involving a pre-trained convolutional network

should be considered. Apart from the lack of video tracking software, a factor that might

preclude the achievement of whistle attribution is high levels of network latency and software

latency associated with the current system of twelve IP surveillance camera systems, which

are managed by the same computer system responsible for managing all sixteen, 192 kHz

hydrophone recordings. Barring a complete system renovation, this problem might be solved

by removing all unnecessary cameras and managing the remainder with simpler software.

However, this might be at odds with other lab goals.

The proposed system for whistle attribution, if complete, would represent the first such

system poised to collect data from a fixed group of dolphins on a time-scale of months or

years. Even among similar systems, only one, consisting of eight hydrophones placed inside

an irregularly-shaped, ocean-connected, relatively non-reverberant lagoon has met any degree
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of success performing whistle attribution, and was temporary (Thomas et al., 2002). Other

similar systems have failed to consistently attribute whistles across individuals primarily

due to an inability to localize whistles as a result of multipath (Freitag and Tyack, 1993;

Janik and Thompson, 2000; López-Rivas and Bazúa-Durán, 2010). Together with the use of

wearable hydrophones, which possess the advantage of unambiguous sound attribution but

the disadvantages of temporality and lack of visualization, the technology proposed here can

help researchers to explore the currently unstudied area of combined dolphin signature and

non-signature whistle exchange. Research in this area is a prerequisite to an understanding

of the level of information exchange mediated by dolphin vocal communication.
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Chapter 8

Appendix

8.1 Mk. II Array Schematics
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8.1. Mk. II Array Schematics
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8.1. Mk. II Array Schematics

MASTER 4-PANEL SCREW LIST

DELRIN in white/light color if possible

SCREWS BY COMPONENT

6 (x4) 1.5”-long 3/8-16 winged SS thumb screws (see previous orders — HOME 

DEPOT) — bracket tightening —> REVISED USE SOCKET CAP

6 (x4) 1”-long 3/8-16 fully-threaded SS cap-head screws WITH washers — top 

plate /brackets

6 (x6) 1.5”-long, fully-threaded 3/8-16 DELRIN socket cap screws — bracket 

tighteners

6 (x6) 1”-long, fully-threaded 3/8-16 DELRIN socket cap screws — top plate/

brackets

6 (x6) PLASTIC washers for 3/18-16 screws — top plate/brackets

5 (x6) 1.25”-long, fully-threaded 3/8-16 DELRIN socket cap screws — adaptor/

front bracket

2 (x6) 2”-long, fully-threaded 3/8-16 DELRIN socket cap screws — adaptor/

support rods

4 (x6) 2”-long, fully-threaded 3/8-16 DELRIN socket cap screws — adaptor/

buttresses

6 (x6) 1.5”-long, partially-threaded 1/4-20 DELRIN socket cap screws — 

buttresses/support rods

2 (x6) 1.75”-long, fully-threaded 3/8-16 DELRIN socket cap screws — buttresses/

cross bar

2 (x6) 2.25”-long, partially-threaded 5/16-18 DELRIN socket cap screws — cross 

bar/ support rods

4 (x6) 1.5”-long, fully-threaded 1/4-20 DELRIN socket cap screws — cable pole 

collars/acrylic

4 (x6) 0.75”-long, fully-threaded 5/16-28 DELRIN socket cap screws — cable pole 

collars/pole

2 (x6) 1.5”-long, fully-threaded 5/16-28 DELRIN socket cap screws — pole/panel

6 (x6) 2”-long, fully-threaded 5/16-18 titanium socket cap screws — panel/

support rods

8 (x4) 2.5”-long 1/4-20 set screws in PLASTIC — INSERTS/panel

12 (x6) 0.5”-long 10-32 wood screws in titanium — bumpers/support rods
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