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ABSTRACT BODY: A major challenge in deriving the silicate mineralogy of comets is ascertaining how the
anisotropic nature of forsterite crystals affects the spectral features' wavelength, relative intensity, and
asymmetry. Forsterite features are identified in cometary comae near 10, 11.05-11.2, 16, 19, 23.5, 27.5 and
33 µm [1-10], so accurate models for forsterite's absorption efficiency (Qabs) are a primary requirement to
compute IR spectral energy distributions (SEDs, λFλ vs. λ) and constrain the silicate mineralogy of comets.
Forsterite is an anisotropic crystal, with three crystallographic axes with distinct indices of refraction for the a-,
b-, and c-axis. The shape of a forsterite crystal significantly affects its spectral features [13-16]. We need
models that account for crystal shape.

The IR absorption efficiencies of forsterite are computed using the discrete dipole approximation (DDA) code
DDSCAT [11,12]. Starting from a fiducial crystal shape of a cube, we systematically elongate/reduce one of
the crystallographic axes. Also, we elongate/reduce one axis while the lengths of the other two axes are
slightly asymmetric (0.8:1.2). The most significant grain shape characteristic that affects the crystalline
spectral features is the relative lengths of the crystallographic axes. The second significant grain shape
characteristic is breaking the symmetry of all three axes [17]. 

Synthetic spectral energy distributions using seven crystal shape classes [17] are fit to the observed SED of
comet C/1995 O1 (Hale-Bopp). The Hale-Bopp crystalline residual better matches equant, b-platelets, c-
platelets, and b-columns spectral shape classes, while a-platelets, a-columns and c-columns worsen the
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spectral fits.

Forsterite condensation and partial evaporation experiments demonstrate that environmental temperature and
grain shape are connected [18-20]. Thus, grain shape is a potential probe for protoplanetary disk
temperatures where the cometary crystalline forsterite formed. The forsterite crystal shapes (equant, b-
platelets, c-platelets, b-colums – excluding a- and c-columns) derived from our modeling [17] of comet Hale-
Bopp, compared to laboratory synthesis experiments [18], suggests that these crystals are high temperature
condensates.

By observing and modeling the crystalline features in comet ISON, we may constrain forsterite crystal
shape(s) and link to their formation temperature(s) and environment(s).
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