28 research outputs found

    Linking enzyme sequence to function using conserved property difference locator to identify and annotate positions likely to control specific functionality

    Get PDF
    BACKGROUND: Families of homologous enzymes evolved from common progenitors. The availability of multiple sequences representing each activity presents an opportunity for extracting information specifying the functionality of individual homologs. We present a straightforward method for the identification of residues likely to determine class specific functionality in which multiple sequence alignments are converted to an annotated graphical form by the Conserved Property Difference Locator (CPDL) program. RESULTS: Three test cases, each comprised of two groups of funtionally-distinct homologs, are presented. Of the test cases, one is a membrane and two are soluble enzyme families. The desaturase/hydroxylase data was used to design and test the CPDL algorithm because a comparative sequence approach had been successfully applied to manipulate the specificity of these enzymes. The other two cases, ATP/GTP cyclases, and MurD/MurE synthases were chosen because they are well characterized structurally and biochemically. For the desaturase/hydroxylase enzymes, the ATP/GTP cyclases and the MurD/MurE synthases, groups of 8 (of ~400), 4 (of ~150) and 10 (of >400) residues, respectively, of interest were identified that contain empirically defined specificity determining positions. CONCLUSION: CPDL consistently identifies positions near enzyme active sites that include those predicted from structural and/or biochemical studies to be important for specificity and/or function. This suggests that CPDL will have broad utility for the identification of potential class determining residues based on multiple sequence analysis of groups of homologous proteins. Because the method is sequence, rather than structure, based it is equally well suited for designing structure-function experiments to investigate membrane and soluble proteins

    Widespread polycistronic gene expression in green algae

    Get PDF
    Polycistronic gene expression, common in prokaryotes, was thought to be extremely rare in eukaryotes. The development of long-read sequencing of full-length transcript isomers (Iso-Seq) has facilitated a reexamination of that dogma. Using Iso-Seq, we discovered hundreds of examples of polycistronic expression of nuclear genes in two divergent species of green algae: Chlamydomonas reinhardtii and Chromochloris zofingiensis Here, we employ a range of independent approaches to validate that multiple proteins are translated from a common transcript for hundreds of loci. A chromatin immunoprecipitation analysis using trimethylation of lysine 4 on histone H3 marks confirmed that transcription begins exclusively at the upstream gene. Quantification of polyadenylated [poly(A)] tails and poly(A) signal sequences confirmed that transcription ends exclusively after the downstream gene. Coexpression analysis found nearly perfect correlation for open reading frames (ORFs) within polycistronic loci, consistent with expression in a shared transcript. For many polycistronic loci, terminal peptides from both ORFs were identified from proteomics datasets, consistent with independent translation. Synthetic polycistronic gene pairs were transcribed and translated in vitro to recapitulate the production of two distinct proteins from a common transcript. The relative abundance of these two proteins can be modified by altering the Kozak-like sequence of the upstream gene. Replacement of the ORFs with selectable markers or reporters allows production of such heterologous proteins, speaking to utility in synthetic biology approaches. Conservation of a significant number of polycistronic gene pairs between C. reinhardtii, C. zofingiensis, and five other species suggests that this mechanism may be evolutionarily ancient and biologically important in the green algal lineage

    Bioprospecting metagenomics of decaying wood: mining for new glycoside hydrolases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To efficiently deconstruct recalcitrant plant biomass to fermentable sugars in industrial processes, biocatalysts of higher performance and lower cost are required. The genetic diversity found in the metagenomes of natural microbial biomass decay communities may harbor such enzymes. Our goal was to discover and characterize new glycoside hydrolases (GHases) from microbial biomass decay communities, especially those from unknown or never previously cultivated microorganisms.</p> <p>Results</p> <p>From the metagenome sequences of an anaerobic microbial community actively decaying poplar biomass, we identified approximately 4,000 GHase homologs. Based on homology to GHase families/activities of interest and the quality of the sequences, candidates were selected for full-length cloning and subsequent expression. As an alternative strategy, a metagenome expression library was constructed and screened for GHase activities. These combined efforts resulted in the cloning of four novel GHases that could be successfully expressed in <it>Escherichia coli</it>. Further characterization showed that two enzymes showed significant activity on <it>p</it>-nitrophenyl-α-<smcaps>L</smcaps>-arabinofuranoside, one enzyme had significant activity against <it>p</it>-nitrophenyl-β-<smcaps>D</smcaps>-glucopyranoside, and one enzyme showed significant activity against <it>p</it>-nitrophenyl-β-<smcaps>D</smcaps>-xylopyranoside. Enzymes were also tested in the presence of ionic liquids.</p> <p>Conclusions</p> <p>Metagenomics provides a good resource for mining novel biomass degrading enzymes and for screening of cellulolytic enzyme activities. The four GHases that were cloned may have potential application for deconstruction of biomass pretreated with ionic liquids, as they remain active in the presence of up to 20% ionic liquid (except for 1-ethyl-3-methylimidazolium diethyl phosphate). Alternatively, ionic liquids might be used to immobilize or stabilize these enzymes for minimal solvent processing of biomass.</p

    The Metagenome of an Anaerobic Microbial Community Decomposing Poplar Wood Chips

    Get PDF
    This study describes the composition and metabolic potential of a lignocellulosic biomass degrading community that decays poplar wood chips under anaerobic conditions. We examined the community that developed on poplar biomass in a non-aerated bioreactor over the course of a year, with no microbial inoculation other than the naturally occurring organisms on the woody material. The composition of this community contrasts in important ways with biomass-degrading communities associated with higher organisms, which have evolved over millions of years into a symbiotic relationship. Both mammalian and insect hosts provide partial size reduction, chemical treatments (low or high pH environments), and complex enzymatic ‘secretomes’ that improve microbial access to cell wall polymers. We hypothesized that in order to efficiently degrade coarse untreated biomass, a spontaneously assembled free-living community must both employ alternative strategies, such as enzymatic lignin depolymerization, for accessing hemicellulose and cellulose and have a much broader metabolic potential than host-associated communities. This would suggest that such a community would make a valuable resource for finding new catalytic functions involved in biomass decomposition and gaining new insight into the poorly understood process of anaerobic lignin depolymerization. Therefore, in addition to determining the major players in this community, our work specifically aimed at identifying functions potentially involved in the depolymerization of cellulose, hemicelluloses, and lignin, and to assign specific roles to the prevalent community members in the collaborative process of biomass decomposition. A bacterium similar to Magnetospirillum was identified among the dominant community members, which could play a key role in the anaerobic breakdown of aromatic compounds. We suggest that these compounds are released from the lignin fraction in poplar hardwood during the decay process, which would point to lignin-modification or depolymerization under anaerobic conditions

    (Table 1) Mg/Ca ratios of Cibicidoides pachyderma and age determination of core top sediments from the Florida Straits

    No full text
    The recent development of foraminiferal Mg/Ca as a paleotemperature proxy has enabled the extraction of global ice volume and local salinity from the more traditional paleotemperature proxy d18O. The benthic foraminiferal genus Cibicidoides is widely used in paleoceanographic reconstructions because of its epifaunal habitat and cosmopolitan distribution, and it has received early attention in Mg/Ca work. However, existing temperature calibrations for Cibicidoides rely heavily on C. pachyderma core top data from one location, Little Bahamas Bank, where authigenic processes and/or reworking may result in elevated warm water Mg/Ca values. Here we present new C. pachyderma Mg/Ca data from a series of 29 high-quality multicore tops collected in the Florida Straits, spanning a temperature range of 5.8-18.6°C. In contrast to previous calibrations, we find no evidence for a strongly exponential response to temperature. The data are best explained by a linear relationship, with a sensitivity of 0.12 mmol/mol per °C
    corecore