21 research outputs found

    Caenorhabditis elegans is a useful model for anthelmintic discovery

    Get PDF
    Parasitic nematodes infect one quarter of the world's population and impact all humans through widespread infection of crops and livestock. Resistance to current anthelmintics has prompted the search for new drugs. Traditional screens that rely on parasitic worms are costly and labour intensive and target-based approaches have failed to yield novel anthelmintics. Here, we present our screen of 67,012 compounds to identify those that kill the non-parasitic nematode Caenorhabditis elegans. We then rescreen our hits in two parasitic nematode species and two vertebrate models (HEK293 cells and zebrafish), and identify 30 structurally distinct anthelmintic lead molecules. Genetic screens of 19 million C. elegans mutants reveal those nematicides for which the generation of resistance is and is not likely. We identify the target of one lead with nematode specificity and nanomolar potency as complex II of the electron transport chain. This work establishes C. elegans as an effective and cost-efficient model system for anthelmintic discovery

    Functional genomics of periplasmic hydrogenases of desulfovibrio vulgaris hildenborough

    No full text
    Bibliography: p. 179-187some pages are in colou

    Function of Periplasmic Hydrogenases in the Sulfate-Reducing Bacterium Desulfovibrio vulgaris Hildenborough▿ †

    No full text
    The sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough possesses four periplasmic hydrogenases to facilitate the oxidation of molecular hydrogen. These include an [Fe] hydrogenase, an [NiFeSe] hydrogenase, and two [NiFe] hydrogenases encoded by the hyd, hys, hyn1, and hyn2 genes, respectively. In order to understand their cellular functions, we have compared the growth rates of existing (hyd and hyn1) and newly constructed (hys and hyn-1 hyd) mutants to those of the wild type in defined media in which lactate or hydrogen at either 5 or 50% (vol/vol) was used as the sole electron donor for sulfate reduction. Only strains missing the [Fe] hydrogenase were significantly affected during growth with lactate or with 50% (vol/vol) hydrogen as the sole electron donor. When the cells were grown at low (5% [vol/vol]) hydrogen concentrations, those missing the [NiFeSe] hydrogenase suffered the greatest impairment. The growth rate data correlated strongly with gene expression results obtained from microarray hybridizations and real-time PCR using mRNA extracted from cells grown under the three conditions. Expression of the hys genes followed the order 5% hydrogen > 50% hydrogen > lactate, whereas expression of the hyd genes followed the reverse order. These results suggest that growth with lactate and 50% hydrogen is associated with high intracellular hydrogen concentrations, which are best captured by the higher activity, lower affinity [Fe] hydrogenase. In contrast, growth with 5% hydrogen is associated with a low intracellular hydrogen concentration, requiring the lower activity, higher affinity [NiFeSe] hydrogenase

    Upregulation of ZIP14 and Altered Zinc Homeostasis in Muscles in Pancreatic Cancer Cachexia

    No full text
    Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer type in which the mortality rate approaches the incidence rate. More than 85% of PDAC patients experience a profound loss of muscle mass and function, known as cachexia. PDAC patients with this condition suffer from decreased tolerance to anti-cancer therapies and often succumb to premature death due to respiratory and cardiac muscle wasting. Yet, there are no approved therapies available to alleviate cachexia. We previously found that upregulation of the metal ion transporter, Zip14, and altered zinc homeostasis are critical mediators of cachexia in metastatic colon, lung, and breast cancer models. Here, we show that a similar mechanism is likely driving the development of cachexia in PDAC. In two independent experimental metastasis models generated from the murine PDAC cell lines, Pan02 and FC1242, we observed aberrant Zip14 expression and increased zinc ion levels in cachectic muscles. Moreover, in advanced PDAC patients, high levels of ZIP14 in muscles correlated with the presence of cachexia. These studies underscore the importance of altered ZIP14 function in PDAC-associated cachexia development and highlight a potential therapeutic opportunity for improving the quality of life and prolonging survival in PDAC patients

    Drug Discovery and Development for Kinetoplastid Diseases

    No full text
    We review the disease, biology and biochemistry of kinetoplastids, as well as the new drugs and drug candidates that have entered the clinic in the last decade. We also describe examples of the pre-clinical exploration of small molecules against various protein targets, (e.g., cysteine proteases, the proteasome and tubulin), as well as cutting-edge molecular and computational strategies, and technologies being brought to bear to discover and develop new anti-trypanosomal drugs. For comprehensive descriptions of the disease, biology and drug therapies prior to 2011, the reader is encouraged to review the chapter by P. M. Woster that appeared in 2010 in the seventh edition of Burger’s Medicinal Chemistry, Drug Discovery, and Development, with the title Antiprotozoal/Antiparasitic Agents
    corecore