12 research outputs found

    Circuit Development in the Dorsal Lateral Geniculate Nucleus (dLGN) of the Mouse.

    Get PDF
    The visual system is one of the most widely used and best understood sensory systems and the dorsal lateral geniculate nucleus (dLGN) of the mouse has emerged as a model for investigating the cellular and molecular mechanisms underlying the development and activity-dependent refinement of sensory connections. Thalamic organization is highly conserved throughout species and the dLGN of the mouse possesses many features common to higher mammals, such as carnivores and primates. Two general classes of neuron are present within the dLGN, thalamocortical relay cells and interneurons, both of which receive direct retinal input. Axons of relay cells exit dLGN and convey visual information to layer IV of cortex, whereas interneurons are involved in local circuitry. In addition, dLGN receives rich nonretinal input from numerous areas of the brain. Studies thus far have focused on the retinogeniculate pathway and the development of connections between retinal ganglion cells (RGCs) and relay cells has been well characterized. However, there are still a number of unanswered questions about circuit development in dLGN. Here we examined two aspects that are not well understood, the pattern of retinal convergence onto interneurons and the structural and functional innervation of nonretinal projections. To address the first issue we conducted in vitro whole-cell recordings from acute thalamic slices of GAD67-GFP mice, a transgenic strain in which dLGN interneurons express GFP. We also did 3-D reconstructions of biocytin-labeled interneurons using multi-photon laser scanning microscopy in conjunction with anterograde labeling of retinogeniculate projections to examine the distribution of retinal contacts. To begin to examine the development of nonretinal connections in dLGN we made use of a transgenic mouse (golli-τ-GFP) to visualize corticogeniculate projections, one of the largest sources of nonretinal input to dLGN. Using this mouse we studied the timing and patterning of corticogeniculate innervation in relation to the development of the retinogeniculate pathway. We also used binocular enucleation and genetic deafferentation to test whether the retina plays a role in regulating nonretinal innervation. We found that there is a coordination of retinal and nonretinal innervation in dLGN. Projections from the retina were the first to innervate and they entered dLGN at perinatal ages. They also made functional connections with both relay cells and interneurons at early postnatal ages. Interestingly, relay cells underwent a period of retinogeniculate refinement, whereas the degree of retinal convergence onto interneurons was maintained. This possibly reflects the different roles that these two cell types have in dLGN. Both structural and functional corticogeniculate innervation was delayed in comparison and occurred postnatally, however in the absence of retinal input the timing of corticogeniculate innervation was accelerated. RGCs transmit the visual information encoded in the retina to dLGN so it may be necessary for these connections to be formed before those from nonretinal projections, which serve to modulate that signal on its way to cortex. Thus precise timing of retinal and nonretinal innervation may be important for the appropriate formation of connections in the visual system and the retina seems to be playing an important role in regulating this timing

    Interneurons in the mouse visual thalamus maintain a high degree of retinal convergence throughout postnatal development

    Get PDF
    Background The dorsal lateral geniculate nucleus (dLGN) of the mouse thalamus has emerged as a powerful experimental system for understanding the refinement of developing sensory connections. Interestingly, many of the basic tenets for such developmental remodeling (for example, pruning of connections to form precise sensory maps) fail to take into account a fundamental aspect of sensory organization, cell-type specific wiring. To date, studies have focused on thalamocortical relay neurons and little is known about the development of retinal connections onto the other principal cell type of dLGN, intrinsic interneurons. Here, we used a transgenic mouse line in which green fluorescent protein (GFP) is expressed within dLGN interneurons (GAD67-GFP), making it possible to visualize them in acutely prepared thalamic slices in order to examine their morphology and functional patterns of connectivity throughout postnatal life. Findings GFP-expressing interneurons were evenly distributed throughout dLGN and had highly complex and widespread dendritic processes that often crossed eye-specific borders. Estimates of retinal convergence derived from excitatory postsynaptic potential (EPSP) amplitude by stimulus intensity plots revealed that unlike relay cells, interneurons recorded throughout the first 5 weeks of life, maintain a large number (approximately eight to ten) of retinal inputs. Conclusions The lack of pruning onto interneurons suggests that the activity-dependent refinement of retinal connections in dLGN is cell-type specific. The high degree of retinal convergence onto interneurons may be necessary for these cells to provide both widespread and local forms of inhibition in dLGN

    A 10-year retrospective review of Salmonella infections at the Children\u27s Hospital in London, Ontario

    Get PDF
    OBJECTIVES: To describe Salmonella infections in children presenting to the Children\u27s Hospital (London Health Sciences Centre, London, Ontario), to assess risk factors for infection and to examine whether younger children, particularly infants younger than 12 weeks of age, experience higher morbidity than older children. METHODS: A 10-year retrospective review of children with Salmonella infections at the Children\u27s Hospital was conducted. Patient demographics, risk factors for infection, clinical characteristics, bacteriology and outcome were collected from the hospital charts and laboratory records. Data were separated into groups based on age and recent use of antibiotics to analyze differences in outcomes. RESULTS: Sixty-six children with Salmonella infections presented to the Children\u27s Hospital over a 10-year period. Common risk factors for Salmonella infection included having sick contacts, living in a rural area, recent travel, contact with pets (especially reptiles) and exposure to local water. Younger age was associated with an increased likelihood of admission to hospital, treatment with antibiotics and a longer course of antibiotic therapy. This was true when comparing older infants with those younger than 12 weeks of age. Patients recently treated with antibiotics and those with significant underlying medical conditions were more likely to be admitted. CONCLUSIONS: A wider knowledge of the epidemiological risk factors for Salmonella infection may improve diagnosis. Higher admission rates were expected in children younger than 12 weeks of age, those recently treated with antibiotics and those who had a significant underlying medical condition. A prospective, multicentre study is needed to further address questions regarding increased illness severity and appropriate management of Salmonella infections in children younger than 12 weeks of age. ©2010 Pulsus Group Inc. All rights reserved

    The absence of retinal input disrupts the development of cholinergic brainstem projections in the mouse dorsal lateral geniculate nucleus

    No full text
    Abstract Background The dorsal lateral geniculate nucleus (dLGN) of the mouse has become a model system for understanding thalamic circuit assembly. While the development of retinal projections to dLGN has been a topic of extensive inquiry, how and when nonretinal projections innervate this nucleus remains largely unexplored. In this study, we examined the development of a major nonretinal projection to dLGN, the ascending input arising from cholinergic neurons of the brainstem. To visualize these projections, we used a transgenic mouse line that expresses red fluorescent protein exclusively in cholinergic neurons. To assess whether retinal input regulates the timing and pattern of cholinergic innervation of dLGN, we utilized the math5-null (math5 −/−) mouse, which lacks retinofugal projections due to a failure of retinal ganglion cell differentiation. Results Cholinergic brainstem innervation of dLGN began at the end of the first postnatal week, increased steadily with age, and reached an adult-like pattern by the end of the first postnatal month. The absence of retinal input led to a disruption in the trajectory, rate, and pattern of cholinergic innervation of dLGN. Anatomical tracing experiments reveal these disruptions were linked to cholinergic projections from parabigeminal nucleus, which normally traverse and reach dLGN through the optic tract. Conclusions The late postnatal arrival of cholinergic projections to dLGN and their regulation by retinal signaling provides additional support for the existence of a conserved developmental plan whereby retinal input regulates the timing and sequencing of nonretinal projections to dLGN

    A 10-year retrospective review of Salmonella infections at the Children’s Hospital in London, Ontario

    Get PDF
    OBJECTIVES: To describe Salmonella infections in children presenting to the Children’s Hospital (London Health Sciences Centre, London, Ontario), to assess risk factors for infection and to examine whether younger children, particularly infants younger than 12 weeks of age, experience higher morbidity than older children

    Research Article Modulation of CREB in the Dorsal Lateral Geniculate Nucleus of Dark-Reared Mice

    No full text
    Copyright © 2012 Thomas E. Krahe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The cAMP-response element-binding protein (CREB) plays an important role in visual cortical plasticity that follows the disruption of sensory activity, as induced by dark rearing (DR). Recent findings indicate that the dorsal lateral geniculate nucleus (dLGN) of thalamus is also sensitive to altered sensory activity. DR disrupts retinogeniculate synaptic strength and pruning in mice, but only when DR starts one week after eye opening (delayed DR, DDR) and not after chronic DR (CDR) from birth. While DR upregulates CREB in visual cortex, whether it also modulates this pathway in dLGN remains unknown. Here we investigate the role of CREB in the dLGN of mice that were CDR or DDR using western blot and immunofluorescence. Similar to findings in visual cortex, CREB is upregulated in dLGN after CDR and DDR. These findings are consistent with the proposal that DR up-regulates the CREB pathway in response to decreased visual drive. 1

    Strict Independence of Parallel and Poly-synaptic Axon-Target Matching during Visual Reflex Circuit Assembly

    No full text
    The use of sensory information to drive specific behaviors relies on circuits spanning long distances that wire up through a range of axon-target recognition events. Mechanisms assembling poly-synaptic circuits and the extent to which parallel pathways can “cross-wire” to compensate for loss of one another remain unclear and are crucial to our understanding of brain development and models of regeneration. In the visual system, specific retinal ganglion cells (RGCs) project to designated midbrain targets connected to downstream circuits driving visuomotor reflexes. Here, we deleted RGCs connecting to pupillary light reflex (PLR) midbrain targets and discovered that axon-target matching is tightly regulated. RGC axons of the eye-reflex pathway avoided vacated PLR targets. Moreover, downstream PLR circuitry is maintained; hindbrain and peripheral components retained their proper connectivity and function. These findings point to a model in which poly-synaptic circuit development reflects independent, highly stringent wiring of each parallel pathway and downstream station

    A Molecular Mechanism Regulating the Timing of Corticogeniculate Innervation

    Get PDF
    Neural circuit formation demands precise timing of innervation by different classes of axons. However, the mechanisms underlying such activity remain largely unknown. In the dorsal lateral geniculate nucleus (dLGN), axons from the retina and visual cortex innervate thalamic relay neurons in a highly coordinated manner, with those from the cortex arriving well after those from retina. The differential timing of retino- and corticogeniculate innervation is not a coincidence but is orchestrated by retinal inputs. Here, we identified a chondroitin sulfate proteoglycan (CSPG) that regulates the timing of corticogeniculate innervation. Aggrecan, a repulsive CSPG, is enriched in neonatal dLGN and inhibits cortical axons from prematurely entering the dLGN. Postnatal loss of aggrecan from dLGN coincides with upregulation of aggrecanase expression in the dLGN and corticogeniculate innervation and, it is important to note, is regulated by retinal inputs. Taken together, these studies reveal a molecular mechanism through which one class of axons coordinates the temporal targeting of another class of axons
    corecore