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SUMMARY

Neural circuit formation demands precise timing of
innervation by different classes of axons. However,
the mechanisms underlying such activity remain
largely unknown. In the dorsal lateral geniculate nu-
cleus (dLGN), axons from the retina and visual cortex
innervate thalamic relay neurons in a highly coordi-
nated manner, with those from the cortex arriving
well after those from retina. The differential timing
of retino- and corticogeniculate innervation is not a
coincidence but is orchestrated by retinal inputs.
Here, we identified a chondroitin sulfate proteogly-
can (CSPG) that regulates the timing of corticogeni-
culate innervation. Aggrecan, a repulsive CSPG, is
enriched in neonatal dLGN and inhibits cortical
axons from prematurely entering the dLGN. Post-
natal loss of aggrecan from dLGN coincides with up-
regulation of aggrecanase expression in the dLGN
and corticogeniculate innervation and, it is important
to note, is regulated by retinal inputs. Taken together,
these studies reveal a molecular mechanism through
which one class of axons coordinates the temporal
targeting of another class of axons.

INTRODUCTION

Neural circuit formation requires precise spatial and temporal

targeting of axons to appropriate brain regions. For decades,

the visual system has served as a model system to explore the

cellular and molecular mechanisms that govern these aspects

of neural circuit formation. In particular, mechanisms underlying

axonal guidance, axonal targeting of distinct nuclei (or regions

within these nuclei), and the sorting of axons into topographic

maps have been elucidated by studying retinofugal circuits

(Huberman et al., 2008; Sanes and Zipursky 2010; Fox and

Guido 2011). While most of these studies have focused on the

mechanism of spatial targeting of axons, the visual system

also offers the opportunity to explore mechanisms underlying
Ce
the timing of innervation by different classes of axons. In the dor-

sal lateral geniculate nucleus (dLGN), retinal and cortical axons

arrive and innervate thalamic relay neurons asynchronously,

with those from the cortex arriving well after those from retina

(Shatz and Rakic 1981; Seabrook et al., 2013). Despite the signif-

icant delay in corticogeniculate (CG) innervation (compared with

retinogeniculate projections), cortical axons accumulate at the

border of the dLGN and appear to be ‘‘waiting’’ for the proper

time to enter and arborize in dLGN (Jacobs et al., 2007; Grant

et al., 2012) (Figure 1A). We recently reported that the timing of

cortical axon entry into dLGN coincides with the remodeling of

retinal axons and appears to be orchestrated by these retinal

inputs (Seabrook et al., 2013). This implies a new level of coordi-

nation in thalamic circuit development. If cortical axons are

indeed ‘‘waiting’’ for the proper time to innervate dLGN, we

postulate that an underlying molecular mechanism must exist

that is regulated by retinal input. In the present study, we sought

to uncover such a mechanism. We discovered that aggrecan, a

repulsive chondroitin sulfate proteoglycan (CSPG), is enriched in

perinatal dLGN, andwe applied in vitro and in vivo approaches to

illustrate its role in regulating the timing of cortical axon invasion

into dLGN. Importantly, we demonstrate that retinal inputs play

an instructive role in regulating aggrecan distribution in dLGN.

RESULTS

Developmental Regulation of Aggrecan in dLGN
Cortical axon growth and entry into dLGN was assessed by

immunostaining tissue from golli-tau-gfp reporter mice, in which

layer VI neurons are selectively labeled with tau-GFP (Figure 1B)

(Jacobs et al., 2007). Axons from layer VI cortical neurons appear

adjacent to the ventromedial border of dLGN shortly after birth

but fail to invade dLGN until postnatal day (P)4 (Figures 1A and

1B; Seabrook et al., 2013). We therefore hypothesized that a

repulsive cue must be present in neonatal dLGN to prevent

premature CG innervation. To identify such a cue, we initially

profiled the transcriptome of P3 and P8 dLGN, with the assump-

tion that the mRNA of repulsive cues inhibiting premature CG

innervation would be downregulated as cortical axons begin to

enter dLGN. No suchmoleculeswere identified (data not shown).

As an alternative approach, we applied a candidate screen for
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Figure 1. Developmental Regulation of Aggrecan in Postnatal dLGN
(A) Schematic depiction of the timing of retino- and CG innervation. Retinal axons are shown in red; cortical axons are shown in green. Synapses are illustrated by

red or green dots.

(B) Development of CG projections in golli-tau-gfp transgenic mice. Projections from layer VI cortical neurons are labeled with tau-GFP in these mice. For all

panels, dLGN are encircled by white dots. D, dorsal; V, ventral; M, medial; L, lateral.

(C) Immunostaining revealed that aggrecan, but not other CSPGs, was enriched in P0 mouse dLGN. Arrows depict eml. Fluorescent (Fl.) intensities were

measured with a line scan along the ventrolateral to dorsomedial axis of LGN (see dashed line). Fluorescent intensities in vLGN and dLGN are plotted. Gray lines

represent IR in individual animals (n = 4), and black line represents mean of all experiments.

(D) Developmental regulation of aggrecan distribution during the first 2 weeks of postnatal dLGN development. Inset shows a lack of aggrecan-IR in the dLGN of

an aggrecan-deficient mutant (acancmd).

(E) Aggrecan-IR and GFP-IR in dLGN of P2 and P5 golli-tau-gfp transgenic mice. Note that the first regions occupied by cortical axons lack aggrecan-IR.

(legend continued on next page)
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CSPGs in neonatal dLGN. This family of extracellular matrix

(ECM) molecules has well-established roles in inhibiting the

growth of axons (Kwok et al., 2008). We focused on the distri-

bution of five CSPGs: brevican, neurocan, versican, phospha-

can, and aggrecan. Little, if any, brevican, neurocan, versican,

and phosphacan were observed in neonatal mouse dLGN

(Figure 1C).

In contrast, aggrecan was significantly enriched in dLGN and

other regions of dorsal thalamus (Figures 1C and 1D). Although

enriched in dLGN at P0, aggrecan was absent from the external

medullary lamina (eml)—the pathway by which cortical axons

approach the dLGN after traveling through the internal capsule

(see arrows in Figures 1C and 1D). To confirm the specificity of

aggrecan-immunoreactivity (IR), we immunostained brain sec-

tions from an autosomal recessive mouse mutant lacking aggre-

can (acancmd) (Watanabe et al., 1994). The lack of aggrecan-IR in

acancmd dLGN confirmed the specificity of aggrecan-IR in dLGN

(Figure 1D).

Although aggrecan-IR was robustly expressed at birth, we

observed its progressive loss from dorsal thalamus during post-

natal development (Figure 1D). The loss of aggrecan in dLGN

coincided with CG innervation. To test this observation defini-

tively, we assessed aggrecan-IR in golli-tau-gfp reporter mice.

Not only did the area of dLGN occupied by aggrecan-IR inversely

correlate with the area of dLGN occupied by GFP-positive CG

axons (Figures 1E and 1F), but the first regions to lack aggrecan

(i.e., ventromedial dLGN) were the first regions innervated by

cortical axons (Figures 1E, 1G, and 1H).

Aggrecan Prevents Cortical Axon Growth into dLGN
Based on the known role of aggrecan in inhibiting axonal growth,

these expression analyses suggest that the distribution of aggre-

can influences when and where cortical axons invade dLGN. For

aggrecan to influence CG innervation, we hypothesized that

layer VI cortical neurons must express a subset of aggrecan/

CSPG receptors, such as Nogo receptors (NgRs) or protein

tyrosine phosphatase receptors (PTPRs) (Shen et al., 2009;

Fisher et al., 2011; Dickendesher et al., 2012). Previous reports

have demonstrated NgR expression in neonatal cortical neurons

(Xiaolei et al., 2009; Wang et al., 2008), and we found that aggre-

can-binding PTPRs are expressed by layer VI neurons (Fig-

ure S1). Thus, cortical neurons have the machinery to respond

to aggrecan.

To test whether aggrecan inhibited layer VI cortical axon

outgrowth, we developed an in vitro modified stripe assay in

which various concentrations of aggrecan were presented to

GFP-expressing cortical neurons isolated from golli-tau-gfp

mice. In these assays, GFP-containing neurites grew into regions

containing no or low concentrations of aggrecan (Figures 2A and

2E). In contrast, high concentrations of aggrecan potently

repelled layer VI cortical neurites (Figures 2B, 2C, and 2E). To

ensure that these results were not due to a physical boundary,
(F) The percentage of dLGN occupied by aggrecan-IR was measured in golli-

percentage of cortical innervation in these mice was also quantified. Data are sh

(G and H) Fluorescent intensities in (E) were measured with a line scan along the

fluorescent intensities from four P2 (G) and four P5 (H) golli-tau-gfp mice are plo

Scale bars, 250 mm.
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we treated aggrecan with chondroitinase ABC (chABC), a bacte-

rial enzyme that efficiently cleaves the inhibitory glycosamino-

glycan side chains from CSPGs. Pretreatment with chABC

significantly reduced the ability of aggrecan to inhibit neurite

outgrowth of layer VI cortical neurons (Figures 2D and 2E).

Since our in vitro data demonstrate that aggrecan is sufficient

to inhibit the outgrowth of cortical axons, we next explored

whether removal of aggrecan accelerated CG innervation in vivo.

To remove aggrecan from neonatal dLGN, we injected chABC

into the dorsal thalamus of golli-tau-gfpmice. Numerous studies

have used similar approaches to remove CSPGs from brain and

spinal cord (Steinmetz et al., 2005; Alilain et al., 2011) and have

shown that the delivery of chABC can efficiently degrade aggre-

can within >1 mm of the injection site. For our studies, we

injected chABC medial to dLGN, ensuring that the injection site

did not disrupt dLGN (Figure S2). Our results demonstrate that

delivery of chABC into neonatal dLGN increased the extent of

CG innervation at P3 compared with uninjected controls or con-

trols injected with penicillinase (PNase), a similarly sized bacte-

rial enzyme with no significant enzymatic activity in brain tissue

(Figures 1C and 2G–2K).

As an alternative approach, we examined CG innervation in

acancmd mutants, which lack aggrecan. These mutants die

immediately at birth and are underdeveloped, compared with

littermate controls. In wild-type (WT) mice, cortical axons arrive

at the ventromedial border of dLGN at birth; therefore, despite

neonatal lethality in acancmd mutants, we were able to assess

whether cortical axons could immediately grow into dLGN at

P0 in the absence of aggrecan. Cortical axons were labeled

with tau-GFP by crossing acancmd mutants with golli-tau-gfp

reporter mice. In the absence of aggrecan, we observed cortical

axons invading dLGN in every P0 acancmd mutant analyzed

(n = 3) (Figures 2L and 2M). In contrast, we failed to detect any

cortical axons in dLGN of littermate controls at P0 (n = 3) or in

any of our other control mice until after P2 (for example, see

Figures 1B and 1E). Two additional features of cortical axons in

acancmd mutants warrant mention. First, cortical axons in P0

acancmd mutants failed to accumulate adjacent to dLGN. Sec-

ond, the axons prematurely entering P0 mutant dLGN appeared

to be pioneers at the leading edge of corticothalamic projections.

Taken together, these results support the finding that aggrecan

is necessary for preventing premature entry of dLGN by cortical

axons.

Aggrecanases Are Upregulated in Postnatal dLGN
It is surprising that, despite dramatic changes in aggrecan-IR

during postnatal dLGN development, we failed to detect signifi-

cant differences in expression levels of acan, the gene encoding

aggrecan (1.3-fold increase from P3 to P8 in dLGN by microar-

ray; p = 0.37 by t test). We therefore suspected that postnatal

decreases in aggrecan distribution resulted from its cleavage

by proteases. This hypothesis was supported by our discovery
tau-gfp transgenic mice for the first 8 days of postnatal development. The

own ± SEM.

ventromedial (vm) to dorsolateral (dl) axis of LGN (see dashed line in (E). Mean

tted for GFP- and aggrecan-IR.
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Figure 2. Aggrecan Inhibits Cortical Axon Outgrowth
(A–D)Modified stripe assays demonstrate that low concentrations of aggrecan

(Acan), shown in (A), are permissive to neurite outgrowth from layer VI neurons

isolated from golli-tau-gfp transgenic mice. In contrast, high concentrations of

aggrecan (Acan), shown in (B) and (C), inhibit neurite outgrowth from layer VI

neurons isolated from golli-tau-gfp transgenic mice. Pretreatment of 10 mg/ml

aggrecan with chABC alleviated its growth-inhibitory properties, shown in (D).

Aggrecan-containing substrata are depicted in red; tau-GFP-expressing

neurons are shown in green. Scale bar in (D), 50 mm for (A) through (D).

(E) Quantification of the percentage of neurites capable of crossing into

aggrecan-containing substrata shown in (A) through (D). Data are shown ±

SEM: n > four experiments in triplicate. **Differs by p < 0.01 by Tukey-Kramer

test.

(F) Schematic depiction of the site of our bilateral intrathalamic injections.

Image of the cresyl violet-stained brain modified from the Allen Institute of

Brain Science.

(G–J) GFP-labeled axon invasion of P3 dLGN following intrathalamic injection

of PNase, shown in (G) and (H), or chABC, shown in (I) and (J), in P0 golli-tau-

gfp transgenic mice. Delivery of chABC accelerated the rate of CG innervation.

(H) and (J) show high magnification images of GFP-IR in areas highlighted by
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that several ADAMTS (a disintegrin and metalloproteinase with

thrombospondin motifs) family members were enriched in

dLGN (Figures 3A and 3B) (Table S1). The ADAMTS family of

metalloproteinases cleaves a wide range of extracellular proteo-

glycans (Tang, 2001). A subset of this family has a particular

affinity for cleaving aggrecanandhasbeen termedaggrecanases

(Stanton et al., 2011; Tortorella andMalfait 2008). Transcriptional

analysis (using microarrays and quantitative PCR [qPCR])

revealed that several of these aggrecanases/ADAMTSs are en-

riched in perinatal dLGN, and their expression increases signifi-

cantly during the first postnatal weeks of development (Figures

3A–3C) (Table S1). Thus, increases in aggrecanase/ADAMTS

expression coincide with decreases in aggrecan-IR in the devel-

oping dLGN. In situ hybridizations (ISHs) confirmed these find-

ings and further revealed several other interesting features of

aggrecanase/ADAMTS expression (Figures 3D–3G). First, the

upregulation of some ADAMTS mRNAs (such as ADAMTS15)

occurred in a ventromedial-to-dorsolateral gradient in dLGN (Fig-

ure 3D)—a feature that resembled the pattern of aggrecan degra-

dation (Figures 1F, 1H, and 1I). Second, ADAMTS mRNAs were

generated by relay neurons in dLGN (Figures 3F and 3G).

To test whether aggrecanases/ADAMTSs contribute to the

timing of CG innervation, we injected active, recombinant

ADAMTS4 intrathalamically. ADAMTS4 (also called aggrecanase

1) was chosen over other dLGN-derived ADAMTS members

for several reasons. First, unlike most ADAMTS members, re-

combinant forms of ADAMTS4 are commercially available and

are enzymatically active. Second, ADAMTS4 has an aggrecan-

degrading activity that is several orders of magnitude higher

than other ADAMTS members (Tortorella and Malfait, 2008).

Third, while each ADAMTS member may be capable of cleaving

one of several distinct sites within aggrecan’s interglobular

domain or chondroitin sulfate domain, ADAMTS4 is capable of

cleaving the majority of these sites. These features led us to sus-

pect that exogenous delivery of recombinant ADAMTS4 would

most effectively degrade dLGN-derived aggrecan. As described

earlier, intrathalamic injections of ADAMTS4 were performed

in neonatal golli-tau-gfp mice, and the extent of CG innerva-

tion was assessed at P3. Our data reveal that recombinant

ADAMTS4 increased the extent of CG innervation at P3

compared with uninjected controls or PNase-injected con-

trols (Figures 2G, 2H, 2K, and 3H–3J). The delivery of both

chABC and ADAMTS4 significantly accelerated CG innervation
arrows in (G) and (I), respectively. Scale bar in (G), 150 mm for (G) and (I); scale

bar in (H), 20 mm for (H) and (J).

(K) Quantification of the percent dLGN innervated by GFP-containing cortical

axons following injection of PNase or chABC. Data are normalized to data

obtained from uninjected golli-tau-gfp littermates and are shown ± SEM: n > 4.

*chABC treatment differs from PNase treatment by p < 0.02. **chABC treat-

ment differs from uninjected controls by p < 0.0005 by Tukey-Kramer test.

PNase treatment and uninjected controls were not statistically different.

(L and M) Cortical axons invade dLGN at P0 in acancmd; golli-tau-gfp mutants

(see arrows). dLGN encircled by dots. Nuclei were labeled with DAPI to

determine dLGN boundaries. In (H), high-magnification of tau-GFP labeled

cortical axons in P0 dLGN shown in (L). Signal has been inverted to enhance

detection of thin caliber cortical axons. dLGN is encircled by dots. Scale bar in

(L), 100 mm; scale bar in (M), 50 mm.

See also Figures S1 and S2.



Figure 3. Aggrecanases Are Upregulated in Postnatal dLGN
(A) Microarray revealed that several members of the ADAMTS family of metalloproteinases are enriched in P3 dLGN compared to adjacent thalamic regions

(vLGN). Expression of ADAMTS genes with known aggrecan-degrading activity are colored in blue. Red line represents no change in gene expression. Data are

shown ± SEM: n = 3. *Differs by p < 0.05 by t test. **Differs by p < 0.01.

(B) Microarray demonstrates upregulation of several aggrecan-degrading ADAMTS members in dLGN from P3 to P8. Expression of ADAMTS genes with known

aggrecan-degrading activity are in blue. Data are shown ± SEM: n = 3. *Differs by p < 0.05. **Differs by p < 0.01.

(C) qPCR confirmed the upregulation of aggrecanases in dLGN from P2 to P14. Data are shown ± SEM: n = 3. *Differs by p < 0.001.

(D and E) ISH of adamts15 mRNA in P3 (D) and P14 (E) LGN. dLGN is encircled by green dots. Scale bar in (D), 200 mm for (D) and (E).

(F and G) Double ISH revealed that adamts4 (F) and adamts15 (G) mRNAs are expressed by syt1-expressing neurons in dLGN. Scale bar, 75 mm for (F) and (G).

(H) GFP-labeled axon invasion of P3 dLGN following intrathalamic injection of ADAMTS4. Scale bar, 150 mm.

(I) High magnification image of GFP-IR in area highlighted by arrow in (H). Scale bar, 20 mm.

(J) Quantification of the percent dLGN innervated by GFP-containing cortical axons following injection of ADAMTS4. Data are normalized to data obtained from

uninjected golli-tau-gfp littermates and are shown ±SEM: n > 4. *ADAMTS treatment differs from uninjected controls or PNase treatment by p < 0.0001 by Tukey-

Kramer test. ADAMTS treatment and chABC treatment were not statistically different.

See also Figure S2.
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compared with controls but were not statistically different from

each other in their ability to stimulate premature CG innervation

(p = 0.12 by Tukey-Kramer test) (Figures 2I–2K and 3H–3J).

Taken together, these results suggest that relay neuron-derived

aggrecanases contribute to the developmental degradation of

aggrecan in dLGN and in the normal timing of CG innervation.

Retinal Inputs Regulate the Timing of Aggrecan
Degradation
We recently reported that surgical or genetic removal of retinal

inputs accelerates the timing of CG innervation (Seabrook

et al., 2013). For aggrecan to be responsible for regulating CG

innervation, we hypothesized that its distribution must be signif-

icantly reduced by the removal of retinal inputs in dLGN. To test

this, we examined aggrecan distribution in math5�/� mutants,

which lack 95% of retinal ganglion cells (Wang et al., 2001).

Retinal axons fail to reach the dLGN in these mutants (Seabrook

et al., 2013). To label CG axons in these mice, mutants were

crossed to golli-tau-gfp reporter mice. At P1, GFP-labeled

cortical axons were observed entering dLGN in math5�/�;
golli-tau-gfp mutants, and the percent dLGN innervated by

cortical axons in these mutants was significantly greater than

in golli-tau-gfp controls for much of the first week of postnatal

development (Figures 1B and 1E–1H; Figures 4A–4C). Little

aggrecan-IR was detected in math5�/�; golli-tau-gfp mutant

dLGN, and the percent dLGN containing detectable aggrecan-

IR was significantly lower in mutants than in controls (Figures

4A and 4C). Similar decreases in dLGN aggrecan immunore-

activity were observed in P3 WT mice, in which retinal

inputs were surgically removed by binocular enucleation (BE)

(% dLGN occupied by aggrecan-IR at P3: WT = 31.5% ±

4.6%; BE = 9.8% ± 3.4%; math5�/� = 6.2% ± 3.6%; n > three

mice per group. For WT versus BE, p = 0.002; for WT versus

math5�/�, p = 0.002; for BE versusmath5�/�, p = 0.76 by Tukey

Kramer test for difference between means). As we described in

controls (for later ages), the first regions of math5�/�; golli-tau-
gfp mutant dLGN innervated by CG axons were the first regions

with diminished aggrecan-IR (see arrows and arrowheads in

Figures 4A, 4E, and 4F). These results support a role for aggre-

can in regulating the timing of CG innervation and demonstrate

that retinal inputs play an instructive role in regulating aggrecan

distribution in dLGN.

Decreased aggrecan protein levels in math5�/�; golli-tau-gfp
mutant dLGN were not the result of downregulation of acan

mRNA expression levels in the absence of retinal inputs (0.94-

fold change in P3 math5�/� dLGN versus control by microarray;

p = 0.84 by t test). Based on the developmental upregulation of

aggrecanases/ADAMTSs in control dLGN, we suspected that

the expression or activity of these metalloproteinases might

be regulated by retinal input. To explore this possibility, we

compared transcriptional profiles in P3 control and math5�/�;
golli-tau-gfp mutant dLGN. Several of the aggrecanase/

ADAMTS family members appeared modestly increased in the

absence of retinal inputs, which suggested that they may be

responsible for the significant reduction in aggrecan-IR in these

mutants (Figure 4E) (adamts4, 1.33-fold increase in math5�/�

dLGN [p = 0.06 by t test]; adamts9, 1.53-fold increase in

math5�/� dLGN [p = 0.1]; adamts12, 1.68-fold increase in
578 Cell Reports 5, 573–581, November 14, 2013 ª2013 The Authors
math5�/� dLGN [p = 0.002]; adamts14, 1.55-fold increase

in math5�/� dLGN [p = 0.07]; adamts15, 1.28-fold increase in

math5�/� dLGN [p = 0.13]; adamts16, 1.42-fold increase in

math5�/� dLGN [p = 0.07]). Moreover, analysis revealed that

mRNA expression of the entire ADAMTS family increased

27.1% ± 12.5% in P3 math5�/� dLGN (versus control; p =

0.002 by t test), whereas similar changes were not observed

for other families of extracellular proteases (e.g., the ADAM

family of metalloproteinases increased 1.1% ± 6.8% in

math5�/� dLGN; p = 0.4 by t test). It is also notable that, besides

changes in aggrecanase/ADAMTS expression, we detected few

significant changes in ECM, growth factors, or transmembrane

molecules known to affect axonal targeting in math5�/� dLGN

(Table S2).

DISCUSSION

Here, we sought to elucidate the molecular underpinnings of the

distinct timing of CG innervation. We identified a role for aggre-

can, a repulsive CSPG enriched in neonatal mouse dLGN, in

preventing the premature entry of cortical axons into dLGN.

Specifically, aggrecan is enriched in dLGN at birth, and its loss

during postnatal development coincides spatially and tempo-

rally with CG innervation (Figure 4H). Likewise, the expression

of endogenous aggrecan-degrading enzymes (i.e., ADAMTSs)

corresponds spatially and temporally with diminished aggrecan

distribution and cortical innervation of dLGN (Figure 4H).

In vitro and in vivo manipulations support our hypothesis that

aggrecan controls the timing of CG innervation, since aggrecan

repels neurites from layer VI cortical neurons and premature

removal of aggrecan accelerates CG innervation.

It warrants mention that the dramatic enrichment of aggrecan

in neonatal dLGN is somewhat surprising, since this region is a

major target of retinal axons, which are potently repelled by ag-

grecan in vitro (Snow and Letourneau 1992). Here, we found that

retinal ganglion cells express a cohort of CSPG-binding PTPRs

(Figure S1), and previous studies show neonatal expression of

NgRs by retinal axons (Xiaolei et al., 2009; Wang et al., 2008).

Therefore, how retinal axons overcome the inhibitory nature of

aggrecan within the neonatal dLGN remains unclear. One possi-

bility is that retinal axons express a cohort of integrin receptors

that permit them to grow into aggrecan-rich brain regions,

such as integrins a3b1 and a6b1 (Condic et al., 1999; Tan

et al., 2011). Indeed, immunostaining revealed that retinal gan-

glion cells, but not cortical neurons, express a3 integrin (Fig-

ure S3) (Figure 4H). An additional and alternative possibility is

that increased expression of neurotrophins in dLGN may permit

retinal targeting in an aggrecan-rich environment, as has been

shown for other axon types (Zhou et al., 2006). RGCs express

neurotrophin receptors, and our previous studies revealed that

neurotrophin 3 and brain-derived neurotrophic factor are both

significantly enriched in perinatal dLGN (Zanellato et al., 1993;

Su et al., 2011).

In addition to identifying a role for aggrecan in controlling the

timing of CG innervation, we demonstrate that the develop-

mental regulation of aggrecan protein is influenced by RG inner-

vation. Thus, retinal inputs play an instructive role in the timing of

CG innervation by regulating aggrecan degradation. It remains



Figure 4. Retinal Inputs Influences the Degradation of Aggrecan in dLGN.

(A) Aggrecan-IR in math5�/�; golli-tau-gfp mutant dLGN, which lacks retinal inputs. Arrowheads depict remaining aggrecan-IR in the lateral aspect of dLGN.

Arrows highlight GFP-labeled axons prematurely invading dLGN. Note that aggrecan is absent from sites of cortical axon invasion. dLGN are encircled by

white dots.

(B) The percentage of dLGN occupied by aggrecan-IR was measured in math5�/�; golli-tau-gfp mutants for the first 8 days of postnatal development. The

percentage of dLGN occupied by tau-GFP-expressing cortical axons was also quantified. Dashed line represented the age at which the percent occupied by

GFP and aggrecan were equal in controls (see Figure 1G).

(C and D) The percent dLGN occupied by tau-GFP-expressing axons (C) or by aggrecan-IR (D) was compared inmath5�/�; golli-tau-gfpmutants and golli-tau-gfp

controls. Data are shown ± SEM. *Differ with age-matched controls by p < 0.01 by Tukey-Kramer test.

(E and F) Fluorescent intensities in (A) were measured with a line scan along the ventromedial (vm) to dorsolateral (dl) axis of LGN (see example in Figures 1G

and 1H). Mean fluorescent intensities from four P1 (E) and four P3 (F) math5�/�; golli-tau-gfp mice are plotted for GFP- and aggrecan-IR.

(G) Microarray analysis revealed that some adamtsmRNAs are modestly upregulated in P3 dLGN inmath5�/�mutants (compared with WT controls). Expression

of ADAMTS genes with known aggrecan-degrading activity are in blue. Red line represents no change in gene expression. Data are shown ± SEM; n = 3. *Differs

by p < 0.05 by t test. Scale bar, 100 mm.

(H) Schematic depicting the mechanism by which aggrecan controls the timing of CG innervation. See Discussion for details.
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unclear exactly how retinal axons influence aggrecan distribution

in dLGN. However, based on our results, we propose that retinal

inputs initially prevent the expression of endogenous aggreca-

nases by dLGN relay neurons (Figure 4H). As retinal inputs

release this ‘‘break’’ on aggrecanase/ADAMTS expression, relay

neurons begin to express and release these enzymes, which

degrade aggrecan and permit cortical axon entry into dLGN.

Support for this hypothesis comes from our results showing

reduced aggrecan levels in the absence of retinal axons and a

modest increase in ADAMTS mRNA expression in the absence

of retinal inputs. We suspect that a modest upregulation of

several aggrecanases may be sufficient to cause dramatic

changes in aggrecan distribution, since all are capable of

degrading aggrecan. Several alternative possibilities for how

retinal inputs govern aggrecan distribution also exist. For

example, retinal innervation may alter the activity of aggreca-

nases/ADAMTSs. Like other metalloproteinases, aggrecanase/

ADAMTS activity is inhibited by tissue inhibitors of metallopro-

teinases and is activated by other enzymes, such as matrix

metalloproteinase 17 (Murphy, 2011; Gao et al., 2004). Aggreca-

nase-activating and -inhibiting factors are generated by both

retinal ganglion cells and dLGN relay neurons (Figure 3) (Kay

et al., 2011); therefore, retinal axons may alter aggrecanase/

ADAMTS activity either by directly secreting these factors or

by inducing relay neurons to secrete them. Alternatively, retinal

inputs may also affect the release of aggrecan into the extracel-

lular environment of dLGN. These possibilities are not mutually

excusive and may work in concert to regulate aggrecan distribu-

tion in the postnatal dLGN.

Finally, cortical axons are not the only nonretinal inputs to

innervate dLGN relay neurons. In addition to those from cortex,

nonretinal inputs to dLGN arise from superior colliculus, pretec-

tum, brain stem, the thalamic reticular nucleus, and local inter-

neurons and account for �90% of all synaptic inputs on to

thalamic relay neurons (Sherman and Guillery 2002; Bickford

et al., 2010). The formation of these other nonretinal inputs on

to dLGN relay neurons are similarly delayed compared with ret-

inogeniculate circuit formation (Bickford et al., 2010; Singh et al.,

2012). It remains unclear whether dLGN-derived aggrecan plays

a similar role in delaying the formation of these other nonretinal

inputs in dLGN.

EXPERIMENTAL PROCEDURES

Animals

WT mice were purchased from Charles River or Harlan. Aggrecan-deficient

mice (acancmd) were purchased from The Jackson Laboratory. The generation

of math5�/� and golli-tau-gfp mice were described elsewhere (Wang et al.,

2001; Jacobs et al., 2007). Genotyping information can be found in the Supple-

mental Experimental Procedures. Binocular enucleations were performed at

birth as described elsewhere (Seabrook et al., 2013). All analyses conformed

to National Institutes of Health guidelines and protocols approved by the Vir-

ginia Polytechnic Institute and State University and Virginia Commonwealth

University Institutional Animal Care and Use Committees.

RNA Analysis

RNA isolation, reverse transcription, PCR, and real-time qPCRwere performed

as described elsewhere (Su et al., 2010). Primer sequences can be found in the

Supplemental Experimental Procedures. Agilent microarrays were performed

by Genus Biosystems as described elsewhere (Su et al., 2011).
580 Cell Reports 5, 573–581, November 14, 2013 ª2013 The Authors
Immunohistochemistry

Fluorescent immunohistochemistry (IHC) was performed on 16 mm cryosec-

tioned paraformaldehyde-fixed brain tissue or cultured neurons as described

elsewhere (Su et al., 2011). Images were acquired on a Zeiss AxioImager A1

fluorescent microscope or a Zeiss 710 confocal microscope. When comparing

different ages, treatments, or genotypes, images were acquired with identical

parameters. A minimum of three animals (per genotype, treatment, or age)

were compared in all experiments. Spatial coverage of dLGN by aggrecan

and GFP-labeled layer VI fibers was determined using threshold analysis as

described elsewhere (Seabrook et al., 2013). A list of the antibodies and addi-

tional details can be found in the Supplemental Experimental Procedures.

ISH

Riboprobe generation and ISH were performed as described previously (Su

et al., 2010). Antisense riboprobes were generated against syt1, adamts4

and adamts15 (Image Clone ID syt1: 5363062; adamts4: 5345809; adamts15:

30619053; Open Biosystems) and were hydrolyzed to 500 nt.

Intrathalamic Injections

P0-P1 golli-tau-gfp mice were anesthetized and injected through the skull

using a glass pipette and Picospritzer with either 0.05 U/ml chABC (Sigma-

Aldrich), 0.05 U/ml penicillinase (Sigma), or 10 mg/ml rhADAMTS4 (R&D Sys-

tems). Two days postinjection, mice were euthanized and perfused, and IHC

was performed. Additional details can be found in the Supplemental Experi-

mental Procedures.

In Vitro Cultures

Cerebral cortices were dissected from E15-E18 golli-tau-gfp embryos,

dissociated into single cell suspensions and were cultured for 3–4 days in

serum-free medium (Neurobasal medium [Life Technologies] with 0.5 mM

L-glutamine, 25 mM L-glutamate, 10 mg/ml gentamicin with B27 supplement).

Chamber slides were ‘‘spotted’’ with various extracellular substrates before

seeding neurons. Briefly, various concentrations (1 mg/ml, 5 mg/ml, and

10 mg/ml) of aggrecan (Sigma), chABC, or recombinant human ADAMTS4

(rhADAMTS4, R&D Systems) were mixed with BSA conjugated to Alexa-Fluor

594 (Invitrogen) (2 mg/ml), and 2 ml spots were placed on to the slide surface in

separate chambers and allowed to incubate in a humidified chamber at 37�C
for 2 hr. A minimum of four experiments (each with at least three replicates)

was compared in all in vitro experiments. Additional details can be found in

the Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

three figures, and two tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2013.09.041.
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