2,690 research outputs found

    Selection of novel geopolymeric mortars for sustainable construction applications using fuzzy topsis approach

    Get PDF
    Construction is recognized as one of the most polluting and energy consuming industries worldwide, especially in developing countries. Therefore, Research and Development (R&D) of novel manufacturing technologies and green construction materials is becoming extremely compelling. This study aims at evaluating the reuse of various wastes, originated in the Kraft pulp-paper industry, as raw materials in the manufacture of novel geopolymeric (GP) mortars whose properties fundamentally depend on the target application (e.g., insulating panel, partition wall, structural element, furnishing, etc.). Five different wastes were reused as filler: Two typologies of Biomass Fly Ash, calcareous sludge, grits, and dregs. The produced samples were characterized and a multi criteria analysis, able to take into account not only the engineering properties, but also the environmental and economic aspects, has been implemented. The criteria weights were evaluated using the Delphi methodology. The fuzzy Topsis approach has been used to consider the intrinsic uncertainty related to unconventional materials, as the produced GP-mortars. The computational analysis showed that adding the considered industrial wastes as filler is strongly recommended to improve the performance of materials intended for structural applications in construction. The results revealed that the formulations containing 5 wt.% of calcareous sludge, grits, and dregs and the one containing 7.5 wt.% of calcareous sludge, grits, dregs, and Biomass Fly Ash-1 have emerged as the best alternatives. Furthermore, it resulted that the Biomass Fly Ash-2 negatively influences the structural performance and relative rank of the material. Finally, this case study clearly shows that the fuzzy Topsis multi-criteria analysis represents a valuable and easy tool to investigate construction materials (either traditional and unconventional) when an intrinsic uncertainty is related to the measurement of the quantitative and qualitative characteristics

    Educação e Formação

    Get PDF
    Conhecer para agir: contributos das ciências sociais para o Livro Branco da Juventude

    Red mud-based geopolymers with tailored alkali diffusion properties and pH buffering ability

    Get PDF
    This study develop novel porous red mud (RM) based geopolymers and evaluates their potential to ensure prolonged pH control. Several properties of the novel geopolymers were examined including buffering ability, alkalis leaching behaviour, mineralogical composition, microstructure and physical properties. Two experimental plans were defined to evaluate the influence of porosity and RM content on those properties. The pH values of the eluted water and geopolymers OH ions leaching have been determined over time showing that total OH ions and the leaching rate can be tailored by controlling the geopolymers porous structure and the availability of free alkaline species. The lower pH gradient over 28th d (1.64 pH units) was achieved by combining a 0.025 wt% pore forming agent (aluminium powder) with 45 wt% MK replacement by red mud. A high and prolonged buffer capacity was accomplished, proving that red mud-based geopolymers have potential to be applied as pH buffering material.This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement.info:eu-repo/semantics/publishedVersio

    To practice or not to practice? Designing higher education curriculum to boost employability

    Get PDF
    One important dimension of Higher education curriculum design pertains to the inclusion of internships in study programmes. These have been generally conceptualized as learning experiences capable of bridging theoretical knowledge and hands-on experiences. The underlying pedagogical relevance is based on the premise that internships create the possibility of contextualized learning, fostering both professional growth and students’ self-esteem and pro-activity (Little, 2006). Interns are provided with the opportunity of early networking, as they enrol in practical activities and professionally interact with other people, besides their academic teachers and their graduate colleagues (Alpert, Heaney, & Kuhn, 2009; Weible, 2009). Research concerning internships has extensively reported the overwhelming positive effect of internships. Nevertheless, a more recent trend in literature has argued that little has been said concerning the relationship between internships and graduate employment or employability. Wilton (2012), for example, argues that more needs to be understood about the characteristics and specificities of internships and the extent to which such characteristics are capable of overcoming the current concern over the increase of graduates’ unemployment rates. Research conducted on the Portuguese case based on a database of 1,168 study programmes of first cycle degrees sough to redress this gap. Besides demonstrating that study programmes which include internships (cooperative education) tend to generate lower levels of unemployment than those that do not include internships, this research has suggested that the nature and structure of internships significantly impacts on graduate unemployment rates. In specific, mandatory internships tend to outperform their optional counterpart in reducing graduate unemployment levels. Moreover, thin sandwich courses also seem to be more beneficial than thick sandwich courses, suggesting that expanding and diversifying internships throughout the curriculum can reduce graduate unemployment rates. These results strongly suggest that it is not (only) the internship learning experience per se that makes the difference considering graduate employability, but (also) the way those internship experiences are organized along the study programme. This poster is, thus, focused on the nature and structure of internships, assessing their implications for higher education curriculum design. It does so by exploring the perspectives of the main stakeholders involved in internships regarding their motivations; required efforts; and expected outcomes. Empirically, the poster is based on the content analysis of semi-structured individual interviews to units coordinators and also focus groups conducted with coordinators of study programmes; internship supervisors (both academics and employers); and also interns. Qualitative analysis has been sustained by the main learning models traditionally used in research on work-based learning and aims at identifying a set of principles related with internships design, and modes of embedding them along an entire course, which may contribute to the development of graduates’ employability. Reported findings may constitute an important primer for reflection on the design of pedagogical strategies that maximize the contextual learning outputs of internships in a more systematic way, being particularly relevant for leading academics, namely those involved in curriculum design

    Structural and biophysical properties of a synthetic channel-forming peptide: designing a clinically relevant anion selective pore

    Get PDF
    The design, synthesis, modeling and in vitro testing of channel-forming peptides derived from the cys-loop superfamily of ligand-gated ion channels are part of an ongoing research focus. Over 300 different sequences have been prepared based on the M2 transmembrane segment of the spinal cord glycine receptor α-subunit. A number of these sequences are water-soluble monomers that readily insert into biological membranes where they undergo supramolecular assembly, yielding channels with a range of selectivities and conductances. Selection of a sequence for further modifications to yield an optimal lead compound came down to a few key biophysical properties: low solution concentrations that yield channel activity, greater ensemble conductance, and enhanced ion selectivity. The sequence NK[subscript]4-M2GlyR T19R, S22W (KKKKPARVGLGITTVLTMRTQW) addressed these criteria. The structure of this peptide has been analyzed by solution NMR as a monomer in detergent micelles, simulated as five-helix bundles in a membrane environment, modified by cysteine-scanning and studied for insertion efficiency in liposomes of selected lipid compositions. Taken together, these results define the structural and key biophysical properties of this sequence in a membrane. This model provides an initial scaffold from which rational substitutions can be proposed and tested to modulate anion selectivity. This article is part of a Special Issue entitled: Protein Folding in Membranes

    Different genomic changes underlie adaptive evolution in populations of contrasting history

    Get PDF
    Funding Information: This work was supported by Portuguese National Funds through “Fundac¸ão para a Ciência e a Tecnologia” (projects PTDC/ BIA-BEC/098213/2008, PTDC/BIA-BIC/2165/2012 and cE3c Unit FCT funding UID/BIA/00329/2013, grants SFRH/BD/ 60734/2009 to I.F. and SFRH/BPD/86186/2012 to P.S.). We thank Miguel Lopes-Cunha for help in the laboratory, Francisco Pina-Martins for help with computing, Josiane Santos and Ana Sofia Quina for discussions, and Mauro Santos and Anthony Long for advice on the study and comments on the manuscript. We also thank the three anonymous reviewers for their constructive suggestions.Experimental evolution is a powerful tool to understand the adaptive potential of populations under environmental change. Here, we study the importance of the historical genetic background in the outcome of evolution at the genomewide level. Using the natural clinal variation of Drosophila subobscura, we sampled populations from two contrasting latitudes (Adraga, Portugal and Groningen, Netherlands) and introduced them in a new common environment in the laboratory. We characterized the genome-wide temporal changes underlying the evolutionary dynamics of these populations, which had previously shown fast convergence at the phenotypic level, but not at chromosomal inversion frequencies. We found that initially differentiated populations did not converge either at genome-wide level or at candidate SNPs with signs of selection. In contrast, populations from Portugal showed convergence to the control population that derived from the same geographical origin and had been long-established in the laboratory. Candidate SNPs showed a variety of different allele frequency change patterns across generations, indicative of an underlying polygenic basis. We did not detect strong linkage around candidate SNPs, but rather a small but long-ranging effect. In conclusion, we found that history played a major role in genomic variation and evolution, with initially differentiated populations reaching the same adaptive outcome through different genetic routes.publishersversionpublishe

    Entomopathogenic fungi biomass production and extracellular biosynthesis of silver nanoparticles for bioinsecticide action

    Get PDF
    Entomopathogenic fungi are microbial agents of insect control in nature. They have been used as biologic strategies to manage insect invasion; however, the challenge is to maintain their shelf life and viability when exposed to high temperatures, ultraviolet radiation, and humidity. Synthesized silver nanoparticles (AgNPs) from fungal extracellular enzymes are an alternative using these microorganisms to obtain nanoparticles with insecticidal action. The present study evaluates the biomass production and the potential to synthesize silver nanoparticles using entomopathogenic fungi isolates. Sixteen isolates of entomopathogenic fungi were used in this study. The fungi pathogenicity and virulence were evaluated using the insect model Tenebrio molitor, at a concentration of 5 × 106 conidia/mL. The fungal biomass was produced in a liquid medium, dried, and weighed. The synthesis of silver nanoparticles was performed with aqueous extracts of the entomopathogenic fungi and silver nitrate solution (1 mM), following characterization by a UV/vis spectrophotometer, mean size, and polydispersity index. The results showed a significant variation in pathogenicity, virulence, and biomass production among the evaluated fungi isolates; however, only one of the isolates did not have the potential to synthesize silver nanoparticles. Pearsons correlation showed significant correlation values only between virulence × biosynthesis potential and biomass production × biosynthesis potential, both with negative values, indicating an inverse correlation. Thus, AgNPs with entomopathogenic fungus extract can produce an innovative bioinsecticide product using a green production process.This work was supported by the Fundação de Amparo à Pesquisa do Estado de Sergipe (FAPITEC), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, #443238/2014-6, #470388/2014-5) and Banco do Nordeste (FUNDECI/2017.0014), the Portuguese Science and Technology Foundation (FCT/MCT), and from European Funds (PRODER/COMPETE) for the project UIDB/04469/2020 (strategic fund), co-financed by FEDER, under the Partnership Agreement PT2020.info:eu-repo/semantics/publishedVersio

    Sodium alginate/polycaprolactone co-axial wet-spun microfibers modified with N-carboxymethyl chitosan and the peptide AAPV for Staphylococcus aureus and human neutrophil elastase inhibition in potential chronic wound scenarios

    Get PDF
    In chronic wound (CW) scenarios, Staphylococcus aureus-induced infections are very prevalent. This leads to abnormal inflammatory processes, in which proteolytic enzymes, such as human neutrophil elastase (HNE), become highly expressed. Alanine-Alanine-Proline-Valine (AAPV) is an antimicrobial tetrapeptide capable of suppressing the HNE activity, restoring its expression to standard rates. Here, we proposed the incorporation of the peptide AAPV within an innovative co-axial drug delivery system, in which the peptide liberation was controlled by N-carboxymethyl chitosan (NCMC) solubilization, a pH-sensitive antimicrobial polymer effective against Staphylococcus aureus. The microfibers' core was composed of polycaprolactone (PCL), a mechanically resilient polymer, and AAPV, while the shell was made of the highly hydrated and absorbent sodium alginate (SA) and NCMC, responsive to neutral-basic pH (characteristic of CW). NCMC was loaded at twice its minimum bactericidal concentration (6.144 mg/mL) against S. aureus, while AAPV was loaded at its maximum inhibitory concentration against HNE (50 μg/mL), and the production of fibers with a core-shell structure, in which all components could be detected (directly or indirectly), was confirmed. Core-shell fibers were characterized as flexible and mechanically resilient, and structurally stable after 28-days of immersion in physiological-like environments. Time-kill kinetics evaluations revealed the effective action of NCMC against S. aureus, while elastase inhibitory activity examinations proved the ability of AAPV to reduce HNE levels. Cell biology testing confirmed the safety of the engineered fiber system for human tissue contact, with fibroblast-like cells and human keratinocytes maintaining their morphology while in contact with the produced fibers. Data confirmed the engineered drug delivery platform as potentially effective for applications in CW care.Authors acknowledge the Portuguese Foundation for Science and Technology (FCT), FEDER funds by means of Portugal 2020 Competitive Factors Operational Program (POCI) and the Portuguese Government (OE) for funding the project PEPTEX with reference PTDC/CTMTEX/28074/2017 (POCI-01-0145-FEDER-028074). Authors also acknowledge project UIDP/00264/2020 of 2C2T and UID/QUI/00686/2020 of CQ, funded by national funds through FCT/MCTES. C.S.M. and H.P.F. also acknowledge FCT for PhD funding via scholarship 2020.08547.BD and for auxiliary researcher contract via 2021.02720.CEEIND, respectively
    corecore