72 research outputs found

    A Macrophage Response to Mycobacterium leprae Phenolic Glycolipid Initiates Nerve Damage in Leprosy

    Get PDF
    Mycobacterium leprae\textit{Mycobacterium leprae} causes leprosy and is unique among mycobacterial diseases in producing peripheral neuropathy. This debilitating morbidity is attributed to axon demyelination resulting from direct interaction of the M. leprae\textit{M. leprae}-specific phenolic glycolipid 1 (PGL-1) with myelinating glia and their subsequent infection. Here, we use transparent zebrafish larvae to visualize the earliest events of M. leprae\textit{M. leprae}-induced nerve damage. We find that demyelination and axonal damage are not directly initiated by M. leprae\textit{M. leprae} but by infected macrophages that patrol axons; demyelination occurs in areas of intimate contact. PGL-1 confers this neurotoxic response on macrophages: macrophages infected with M. marinum\textit{M. marinum}-expressing PGL-1 also damage axons. PGL-1 induces nitric oxide synthase in infected macrophages, and the resultant increase in reactive nitrogen species damages axons by injuring their mitochondria and inducing demyelination. Our findings implicate the response of innate macrophages to M. leprae\textit{M. leprae} PGL-1 in initiating nerve damage in leprosy.This work was supported by an A.P. Giannini Foundation Postdoctoral Fellowship, an NIH training grant (T32 AI1007411), and an NIH NRSA Postdoctoral Fellowship (AI104240) to C.A.M.; an NSF Predoctoral Fellowship and NIH training grant T32 AI55396 to C.J.C.; a UCLA Clinical Translational Science Institute grant (UL1TR001881 to K.K.S.); K08AR066545 to P.O.S.; U19AI111224 and R01AI049313 to D.B.M.; an NIH grant (R01AR064582) to A.S.; the NIH Director’s Pioneer Award, an NIH MERIT award (R37AI054503), and a Wellcome Trust Principal Research Fellowship to L.R

    Transient Activation of Hematopoietic Stem and Progenitor Cells by IFNγ during Acute Bacterial Infection

    Get PDF
    How hematopoietic stem cells (HSCs) respond to inflammatory signals during infections is not well understood. Our studies have used a murine model of ehrlichiosis, an emerging tick-born disease, to address how infection impacts hematopoietic function. Infection of C57BL/6 mice with the intracellular bacterium, Ehrlichia muris, results in anemia and thrombocytopenia, similar to what is observed in human ehrlichiosis patients. In the mouse, infection promotes myelopoiesis, a process that is critically dependent on interferon gamma (IFNγ) signaling. In the present study, we demonstrate that E. muris infection also drives the transient proliferation and expansion of bone marrow Lin-negative Sca-1+ cKit+ (LSK) cells, a population of progenitor cells that contains HSCs. Expansion of the LSK population in the bone marrow was associated with a loss of dormant, long-term repopulating HSCs, reduced engraftment, and a bias towards myeloid lineage differentiation within that population. The reduced engraftment and myeloid bias of the infection-induced LSK cells was transient, and was most pronounced on day 8 post-infection. The infection-induced changes were accompanied by an expansion of more differentiated multipotent progenitor cells, and required IFNγ signaling. Thus, in response to inflammatory signals elicited during acute infection, HSCs can undergo a rapid, IFNγ-dependent, transient shift from dormancy to activity, ostensibly, to provide the host with additional or better-armed innate cells for host defense. Similar changes in hematopoietic function likely underlie many different infections of public health importance

    Candida albicans Induces Selective Development of Macrophages and Monocyte Derived Dendritic Cells by a TLR2 Dependent Signalling

    Get PDF
    As TLRs are expressed by haematopoietic stem and progenitor cells (HSPCs), these receptors may play a role in haematopoiesis in response to pathogens during infection. We have previously demonstrated that in in vitro defined conditions inactivated yeasts and hyphae of Candida albicans induce HSPCs proliferation and differentiation towards the myeloid lineage by a TLR2/MyD88 dependent pathway. In this work, we showed that C. albicans invasive infection with a low virulence strain results in a rapid expansion of HSPCs (identified as LKS cells: Lin− c-Kit+ Sca-1+ IL-7Rα−), that reach the maximum at day 3 post-infection. This in vivo expansion of LKS cells in TLR2−/− mice was delayed until day 7 post- infection. Candidiasis was, as expected, accompanied by an increase in granulopoiesis and decreased lymphopoiesis in the bone marrow. These changes were more pronounced in TLR2−/− mice correlating with their higher fungal burden. Accordingly, emigration of Ly6Chigh monocytes and neutrophils to spleen was increased in TLR2−/− mice, although the increase in macrophages and inflammatory macrophages was completely dependent on TLR2. Similarly, we detected for the first time, in the spleen of C. albicans infected control mice, a newly generated population of dendritic cells that have the phenotype of monocyte derived dendritic cells (moDCs) that were not generated in TLR2−/− infected mice. In addition, C. albicans signalling through TLR2/MyD88 and Dectin-1 promotes in vitro the differentiation of Lin− cells towards moDCs that secrete TNF-α and are able to kill the microorganism. Therefore, our results indicate that during infection C. albicans can directly stimulate progenitor cells through TLR2 and Dectin-1 to generate newly formed inflammatory macrophages and moDCs that may fulfill an essential role in defense mechanisms against the pathogen

    Host Immune Transcriptional Profiles Reflect the Variability in Clinical Disease Manifestations in Patients with Staphylococcus aureus Infections

    Get PDF
    Staphylococcus aureus infections are associated with diverse clinical manifestations leading to significant morbidity and mortality. To define the role of the host response in the clinical manifestations of the disease, we characterized whole blood transcriptional profiles of children hospitalized with community-acquired S. aureus infection and phenotyped the bacterial strains isolated. The overall transcriptional response to S. aureus infection was characterized by over-expression of innate immunity and hematopoiesis related genes and under-expression of genes related to adaptive immunity. We assessed individual profiles using modular fingerprints combined with the molecular distance to health (MDTH), a numerical score of transcriptional perturbation as compared to healthy controls. We observed significant heterogeneity in the host signatures and MDTH, as they were influenced by the type of clinical presentation, the extent of bacterial dissemination, and time of blood sampling in the course of the infection, but not by the bacterial isolate. System analysis approaches provide a new understanding of disease pathogenesis and the relation/interaction between host response and clinical disease manifestations

    Autophagy and ATP-induced anti-apoptosis in antigen presenting cells (APC) follows the cytokine storm in patients after major trauma

    Get PDF
    Severe trauma and the systemic inflammatory response syndrome (SIRS) occur as a result of a cytokine storm which is in part due to ATP released from damaged tissue. This pathology also leads to increased numbers of immature antigen presenting cells (APC) sharing properties of dendritic cells (DC) or macrophages (MΦ). The occurrence of immature APC appears to coincide with the reactivation of herpes virus infections such as Epstein Barr virus (EBV). The aim of this study was the comparative analysis of the ultrastructural and functional characteristics of such immature APC. In addition, we investigated EBV infection/ reactivation and whether immature APC might be targets for natural killers (NK). Significant macroautophagy, mitochondrial degradation and multivesicular body formation together with the identification of herpes virus particles were morphological findings associated with immature APC. Exogenous stressors such as ATP further increased morphological signs of autophagy, including LC3 expression. Functional tests using fluorescent bacteria proved impaired phagolysosome fusion. However, immature APC were susceptible to NK-92-mediated cytolysis. We found evidence for EBV latency state II infection by detecting EBV-specific LMP1 and EBNA2 in immature APC and in whole blood of these patients. In summary, trauma-induced cytokine storms may induce maturation arrest of APC, promote ATP-induced autophagy, support EBV persistence and impair the degradation of phagocytozed bacteria through inefficient phagolysosome fusion. The susceptibility to NK-mediated cytolysis supports the hypothesis that NK function is likely to contribute to immune reconstitution after major trauma by regulating immature APC, and ATP-induced autophagy and survival

    Systemic Treatment with CpG-B after Sublethal Rickettsial Infection Induces Mouse Death through Indoleamine 2,3-Dioxygenase (IDO)

    Get PDF
    Due to its strong immune stimulatory effects through TLR9, CpG-containing oligodeoxynucleotides (CpG ODN) have been tested in multiple clinical trials as vaccine adjuvant for infectious diseases and cancer. However, immune suppression induced by systemic administration of CpGs has been reported recently. In this study, we evaluated the impact of CpGs in an acute rickettsiosis model. We found that systemic treatment with type B CpG (CpG-B), but not type A CpG (CpG-A), at 2 days after sublethal R. australis infection induced mouse death. Although wild-type (WT) B6 and IDO−/− mice showed similar survival rates with three different doses of R. australis infection, treatment with CpG-B after sublethal infection consistently induced higher mortality with greater tissue bacterial loads in WT but not IDO−/− mice. Also, CpG-B treatment promoted the development of higher serum concentrations of proinflammatory cytokines/chemokines through IDO. Furthermore, while T cell-mediated immune responses enhanced by CpG-B were independent of IDO, treatment with CpG-B promoted T cell activation, PD-1 expression and cell apoptosis partially through IDO. A depletion study using anti-mPDCA-1 mAb indicated that plasmacytoid dendritic cells (pDC) were not required for CpG-B-induced death of R. australis-infected mice. Additionally, the results in iNOS−/− mice suggested that nitric oxide (NO) was partially involved in CpG-B-induced death of R. australis-infected mice. Surprisingly, pre-treatment with CpG-B before administration of a lethal dose of R. australis provided effective immunity in WT, IDO−/− and iNOS−/− mice. Taken together, our study provides evidence that CpGs exert complex immunological effects by both IDO-dependent and -independent mechanisms, and that systemic treatment with CpGs before or after infection has a significant and distinct impact on disease outcomes

    Inflammation Triggers Emergency Granulopoiesis through a Density-Dependent Feedback Mechanism

    Get PDF
    Normally, neutrophil pools are maintained by homeostatic mechanisms that require the transcription factor C/EBPα. Inflammation, however, induces neutrophilia through a distinct pathway of “emergency” granulopoiesis that is dependent on C/EBPβ. Here, we show in mice that alum triggers emergency granulopoiesis through the IL-1RI-dependent induction of G-CSF. G-CSF/G-CSF-R neutralization impairs proliferative responses of hematopoietic stem and progenitor cells (HSPC) to alum, but also abrogates the acute mobilization of BM neutrophils, raising the possibility that HSPC responses to inflammation are an indirect result of the exhaustion of BM neutrophil stores. The induction of neutropenia, via depletion with Gr-1 mAb or myeloid-specific ablation of Mcl-1, elicits G-CSF via an IL-1RI-independent pathway, stimulating granulopoietic responses indistinguishable from those induced by adjuvant. Notably, C/EBPβ, thought to be necessary for enhanced generative capacity of BM, is dispensable for increased proliferation of HSPC to alum or neutropenia, but plays a role in terminal neutrophil differentiation during granulopoietic recovery. We conclude that alum elicits a transient increase in G-CSF production via IL-1RI for the mobilization of BM neutrophils, but density-dependent feedback sustains G-CSF for accelerated granulopoiesis

    Depletion of Dendritic Cells Enhances Innate Anti-Bacterial Host Defense through Modulation of Phagocyte Homeostasis

    Get PDF
    Dendritic cells (DCs) as professional antigen-presenting cells play an important role in the initiation and modulation of the adaptive immune response. However, their role in the innate immune response against bacterial infections is not completely defined. Here we have analyzed the role of DCs and their impact on the innate anti-bacterial host defense in an experimental infection model of Yersinia enterocolitica (Ye). We used CD11c-diphtheria toxin (DT) mice to deplete DCs prior to severe infection with Ye. DC depletion significantly increased animal survival after Ye infection. The bacterial load in the spleen of DC-depleted mice was significantly lower than that of control mice throughout the infection. DC depletion was accompanied by an increase in the serum levels of CXCL1, G-CSF, IL-1α, and CCL2 and an increase in the numbers of splenic phagocytes. Functionally, splenocytes from DC-depleted mice exhibited an increased bacterial killing capacity compared to splenocytes from control mice. Cellular studies further showed that this was due to an increased production of reactive oxygen species (ROS) by neutrophils. Adoptive transfer of neutrophils from DC-depleted mice into control mice prior to Ye infection reduced the bacterial load to the level of Ye-infected DC-depleted mice, suggesting that the increased number of phagocytes with additional ROS production account for the decreased bacterial load. Furthermore, after incubation with serum from DC-depleted mice splenocytes from control mice increased their bacterial killing capacity, most likely due to enhanced ROS production by neutrophils, indicating that serum factors from DC-depleted mice account for this effect. In summary, we could show that DC depletion triggers phagocyte accumulation in the spleen and enhances their anti-bacterial killing capacity upon bacterial infection

    Ligand engagement of Toll-like receptors regulates their expression in cortical microglia and astrocytes

    Get PDF
    BACKGROUND: Toll-like receptor (TLR) activation on microglia and astrocytes are key elements in neuroinflammation which accompanies a number of neurological disorders. While TLR activation on glia is well-established to up-regulate pro-inflammatory mediator expression, much less is known about how ligand engagement of one TLR may affect expression of other TLRs on microglia and astrocytes. METHODS: In the present study, we evaluated the effects of agonists for TLR2 (zymosan), TLR3 (polyinosinic-polycytidylic acid (poly(I:C)), a synthetic analogue of double-stranded RNA) and TLR4 (lipopolysaccaride (LPS)) in influencing expression of their cognate receptor as well as that of the other TLRs in cultures of rat cortical purified microglia (>99.5 %) and nominally microglia-free astrocytes. Elimination of residual microglia (a common contaminant of astrocyte cultures) was achieved by incubation with the lysosomotropic agent L-leucyl-L-leucine methyl ester (L-LME). RESULTS: Flow cytometric analysis confirmed the purity (essentially 100 %) of the obtained microglia, and up to 5 % microglia contamination of astrocytes. L-LME treatment effectively removed microglia from the latter (real-time polymerase chain reaction). The three TLR ligands robustly up-regulated gene expression for pro-inflammatory markers (interleukin-1 and interleukin-6, tumor necrosis factor) in microglia and enriched, but not purified, astrocytes, confirming cellular functionality. LPS, zymosan and poly(I:C) all down-regulated TLR4 messenger RNA (mRNA) and up-regulated TLR2 mRNA at 6 and 24 h. In spite of their inability to elaborate pro-inflammatory mediator output, the nominally microglia-free astrocytes (>99 % purity) also showed similar behaviours to those of microglia, as well as changes in TLR3 gene expression. LPS interaction with TLR4 activates downstream mitogen-activated protein kinase and nuclear factor-κB signalling pathways and subsequently causes inflammatory mediator production. The effects of LPS on TLR2 mRNA in both cell populations were antagonized by a nuclear factor-κB inhibitor. CONCLUSIONS: TLR2 and TLR4 activation in particular, in concert with microglia and astrocytes, comprise key elements in the initiation and maintenance of neuropathic pain. The finding that both homologous (zymosan) and heterologous (LPS, poly(I:C)) TLR ligands are capable of regulating TLR2 gene expression, in particular, may have important implications in understanding the relative contributions of different TLRs in neurological disorders associated with neuroinflammation
    corecore