7,712 research outputs found
Universal Dephasing Control During Quantum Computation
Dephasing is a ubiquitous phenomenon that leads to the loss of coherence in
quantum systems and the corruption of quantum information. We present a
universal dynamical control approach to combat dephasing during all stages of
quantum computation, namely, storage, single- and two-qubit operators. We show
that (a) tailoring multi-frequency gate pulses to the dephasing dynamics can
increase fidelity; (b) cross-dephasing, introduced by entanglement, can be
eliminated by appropriate control fields; (c) counter-intuitively and contrary
to previous schemes, one can increase the gate duration, while simultaneously
increasing the total gate fidelity.Comment: 4 pages,3 figure
Efficient excitation of a two level atom by a single photon in a propagating mode
State mapping between atoms and photons, and photon-photon interactions play
an important role in scalable quantum information processing. We consider the
interaction of a two-level atom with a quantized \textit{propagating} pulse in
free space and study the probability of finding the atom in the
excited state at any time . This probability is expected to depend on (i)
the quantum state of the pulse field and (ii) the overlap between the pulse and
the dipole pattern of the atomic spontaneous emission. We show that the second
effect is captured by a single parameter , obtained by
weighting the dipole pattern with the numerical aperture. Then can be
obtained by solving time-dependent Heisenberg-Langevin equations. We provide
detailed solutions for both single photon Fock state and coherent states and
for various temporal shapes of the pulses.Comment: 6 pages, 5 figures, 2 table
Crew Quarters (CQ) and Electromagnetic Interference (EMI) Measurement Facility Combined Impedance Study
This report documents an investigation into observed failures associated with conducted susceptibility testing of Crew Quarters (CQ) hardware in the Johnson Space Center (JSC) Electromagnetic Interference (EMI) Measurement Facility, and the work accomplished to identify the source of the observed behavior. Investigation led to the conclusion that the hardware power input impedance was interacting with the facility power impedance leading to instability at the observed frequencies of susceptibility. Testing performed in other facilities did not show this same behavior, pointing back to the EMI Measurement Facility power as the potential root cause. A LISN emulating the Station power bus impedance was inserted into the power circuit, and the susceptibility was eliminated from the measurements
Witnessing Entanglement with Second-Order Interference
Second-order interference and Hanbury-Brown and Twiss type experiments can
provide an operational framework for the construction of witness operators that
can test classical and nonclassical properties of a Gaussian squeezed state
(GSS), and provide entanglement witness operators to study the separability
properties of correlated Gaussian squeezed sates.Comment: 10 pages, 12 figure
Electromagnetic Interference/Compatibility (EMI/EMC) Control Test and Measurement Facility: User Test Planning Guide
Test process, milestones and inputs are unknowns to first-time users of the EMI/EMC Test Facility. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide
Entanglement of formation for a class of -dimensional systems
Currently the entanglement of formation can be calculated analytically for
mixed states in a -dimensional Hilbert space. For states in higher
dimensional Hilbert space a closed formula for quantifying entanglement does
not exist. In this regard only entanglement bounds has been found for
estimating it. In this work, we find an analytical expression for evaluating
the entanglement of formation for bipartite ()-dimensional mixed
states.Comment: 5 pages, 4 figures. Submitted for publicatio
Quantum fluctuations of a vortex in an optical lattice
Using a variational ansatz for the wave function of the Bose-Einstein
condensate, we develop a quantum theory of vortices and quadrupole modes in a
one-dimensional optical lattice. We study the coupling between the quadrupole
modes and Kelvin modes, which turns out to be formally analogous to the theory
of parametric processes in quantum optics. This leads to the possibility of
squeezing vortices. We solve the quantum multimode problem for the Kelvin modes
and quadrupole modes numerically and find properties that cannot be explained
with a simple linear-response theory.Comment: final version, minor change
Suppressing decoherence and improving entanglement by quantum-jump-based feedback control in two-level systems
We study the quantum-jump-based feedback control on the entanglement shared
between two qubits with one of them subject to decoherence, while the other
qubit is under the control. This situation is very relevant to a quantum system
consisting of nuclear and electron spins in solid states. The possibility to
prolong the coherence time of the dissipative qubit is also explored. Numerical
simulations show that the quantum-jump-based feedback control can improve the
entanglement between the qubits and prolong the coherence time for the qubit
subject directly to decoherence
Shot noise spectrum of superradiant entangled excitons
The shot noise produced by tunneling of electrons and holes into a double dot
system incorporated inside a p-i-n junction is investigated theoretically. The
enhancement of the shot noise is shown to originate from the entangled
electron-hole pair created by superradiance. The analogy to the superconducting
cooper pair box is pointed out. A series of Zeno-like measurements is shown to
destroy the entanglement, except for the case of maximum entanglement.Comment: 5 pages, 3 figures, to appear in Phys. Rev. B (2004
Phase Coherence in a Driven Double-Well System
We analyze the dynamics of the molecular field incoherently pumped by the
photoassociation of fermionic atoms and coupled by quantum tunnelling in a
double-well potential. The relative phase distribution of the molecular modes
in each well and their phase coherence are shown to build up owing to quantum
mechanical fluctuations starting from the vacuum state. We identify three
qualitatively different steady-state phase distributions, depending on the
ratio of the molecule-molecule interaction strength to interwell tunnelling,
and examine the crossover from a phase-coherent regime to a phase-incoherent
regime as this ratio increases.Comment: 5 pages, 2 figure
- …
