Dephasing is a ubiquitous phenomenon that leads to the loss of coherence in
quantum systems and the corruption of quantum information. We present a
universal dynamical control approach to combat dephasing during all stages of
quantum computation, namely, storage, single- and two-qubit operators. We show
that (a) tailoring multi-frequency gate pulses to the dephasing dynamics can
increase fidelity; (b) cross-dephasing, introduced by entanglement, can be
eliminated by appropriate control fields; (c) counter-intuitively and contrary
to previous schemes, one can increase the gate duration, while simultaneously
increasing the total gate fidelity.Comment: 4 pages,3 figure