292 research outputs found

    An analysis and evaluation of advertising media

    Full text link
    This item was digitized by the Internet Archive

    Catastrophic tibial baseplate failure of a modern cementless total knee arthroplasty implant

    Get PDF
    Tibial baseplate fracture following primary total knee arthroplasty is a rare complication, particularly with modern implants and surgical techniques. This case details the first known report of mid-range follow-up catastrophic failure of a cementless modular, trabecular metal tibial baseplate. This failure highlights the importance of continued follow-up for novel implants, to include cementless knee arthroplasty designs, particularly if new symptoms arise or periarticular bone loss is identified on radiograph. and Knee Surgeons

    Generation of internal solitary waves by lateral circulation in a stratified estuary

    Get PDF
    Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 1789-1797, doi:10.1175/JPO-D-16-0240.1.Internal solitary waves are commonly observed in the coastal ocean where they are known to contribute to mass transport and turbulent mixing. While these waves are often generated by cross-isobath barotropic tidal currents, novel observations are presented suggesting that internal solitary waves result from along-isobath tidal flows over channel-shoal bathymetry. Mooring and ship-based velocity, temperature, and salinity data were collected over a cross-channel section in a stratified estuary. The data show that Ekman forcing on along-channel tidal currents drives lateral circulation, which interacts with the stratified water over the deep channel to generate a supercritical mode-2 internal lee wave. This lee wave propagates onto the shallow shoal and evolves into a group of internal solitary waves of elevation due to nonlinear steepening. These observations highlight the potential importance of three-dimensionality on the conversion of tidal flow to internal waves in the rotating ocean.National Science Foundation (OCE-1061609)2018-01-0

    Electromagnetically induced transparency in superconducting quantum circuits : Effects of decoherence, tunneling and multi-level cross-talk

    Full text link
    We explore theoretically electromagnetically-induced transparency (EIT) in a superconducting quantum circuit (SQC). The system is a persistent-current flux qubit biased in a Λ\Lambda configuration. Previously [Phys. Rev. Lett. 93, 087003 (2004)], we showed that an ideally-prepared EIT system provides a sensitive means to probe decoherence. Here, we extend this work by exploring the effects of imperfect dark-state preparation and specific decoherence mechanisms (population loss via tunneling, pure dephasing, and incoherent population exchange). We find an initial, rapid population loss from the Λ\Lambda system for an imperfectly prepared dark state. This is followed by a slower population loss due to both the detuning of the microwave fields from the EIT resonance and the existing decoherence mechanisms. We find analytic expressions for the slow loss rate, with coefficients that depend on the particular decoherence mechanisms, thereby providing a means to probe, identify, and quantify various sources of decoherence with EIT. We go beyond the rotating wave approximation to consider how strong microwave fields can induce additional off-resonant transitions in the SQC, and we show how these effects can be mitigated by compensation of the resulting AC Stark shifts

    Recent Decisions

    Get PDF
    Comments on recent decisions by Francis W. Collopy, William J. Verdonk, Vincent C. A. Scully, John F. Mendoza, James L. O\u27Brien, Bernard L. Weddel, William B. Wombacher, Thomas L. Smith, Henry M. Shine, Jr., James D. Matthews, Clifford A. Goodrich, Jr., Wilmer L. McLaughlin, and William M. Dickson

    Characterization and modulation of Langmuir circulation in Chesapeake Bay

    Get PDF
    Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2621–2639, doi:10.1175/JPO-D-14-0239.1.Measurements made as part of a large-scale experiment to examine wind-driven circulation and mixing in Chesapeake Bay demonstrate that circulations consistent with Langmuir circulation play an important role in surface boundary layer dynamics. Under conditions when the turbulent Langmuir number Lat is low (<0.5), the surface mixed layer is characterized by 1) elevated vertical turbulent kinetic energy; 2) decreased anisotropy; 3) negative vertical velocity skewness indicative of strong/narrow downwelling and weak/broad upwelling; and 4) strong negative correlations between low-frequency vertical velocity and the velocity in the direction of wave propagation. These characteristics appear to be primarily the result of the vortex force associated with the surface wave field, but convection driven by a destabilizing heat flux is observed and appears to contribute significantly to the observed negative vertical velocity skewness. Conditions that favor convection usually also have strong Langmuir forcing, and these two processes probably both contribute to the surface mixed layer turbulence. Conditions in which traditional stress-driven turbulence is important are limited in this dataset. Unlike other shallow coastal systems where full water column Langmuir circulation has been observed, the salinity stratification in Chesapeake Bay is nearly always strong enough to prevent full-depth circulation from developing.The funding for this research was provided by the National Science Foundation Grants OCE-1339032 and OCE-1338518.2016-04-0

    Collaborative Research: The Role of Wind in Estuarine Dynamics, Upper Chesapeake Bay, VIMS Instruments deployed in collaboration with UMCES and WHOI; March-May, 2012 deployment.

    Get PDF
    While the project is a collaborative effort involving several researchers from the Virginia Institute of Marine Science (VIMS), the University of Maryland Center for Environmental Science (UMCES) and the Woods Hole Oceanographic Institution (WHOI), the Data archive here is primarily from VIMS owned instrumentation deployed as part of the project. A series of instruments were deployed in three transects in Upper Chesapeake Bay, South of the Choptank River from March to May 2012. This Dataset was collected with autonomously deployed Acoustic Doppler Current Profilers (ADCP), Acoustic Doppler Velicometers (ADV), and Conductivity and Temperature Sensors (CT)

    System and Method for Automated Rendezvous, Docking and Capture of Autonomous Underwater Vehicles

    Get PDF
    A system for automated rendezvous, docking, and capture of autonomous underwater vehicles at the conclusion of a mission comprising of comprised of a docking rod having lighted, pulsating (in both frequency and light intensity) series of LED light strips thereon, with the LEDs at a known spacing, and the autonomous underwater vehicle specially designed to detect and capture the docking rod and then be lifted structurally by a spherical end strop about which the vehicle can be pivoted and hoisted up (e.g., onto a ship). The method of recovery allows for very routine and reliable automated recovery of an unmanned underwater asset

    Elimination of laboratory ozone leads to a dramatic improvement in the reproducibility of microarray gene expression measurements

    Get PDF
    BACKGROUND: Environmental ozone can rapidly degrade cyanine 5 (Cy5), a fluorescent dye commonly used in microarray gene expression studies. Cyanine 3 (Cy3) is much less affected by atmospheric ozone. Degradation of the Cy5 signal relative to the Cy3 signal in 2-color microarrays will adversely reduce the Cy5/Cy3 ratio resulting in unreliable microarray data. RESULTS: Ozone in central Arkansas typically ranges between ~22 ppb to ~46 ppb and can be as high as 60–100 ppb depending upon season, meteorological conditions, and time of day. These levels of ozone are common in many areas of the country during the summer. A carbon filter was installed in the laboratory air handling system to reduce ozone levels in the microarray laboratory. In addition, the airflow was balanced to prevent non-filtered air from entering the laboratory. These modifications reduced the ozone within the microarray laboratory to ~2–4 ppb. Data presented here document reductions in Cy5 signal on both in-house produced microarrays and commercial microarrays as a result of exposure to unfiltered air. Comparisons of identically hybridized microarrays exposed to either carbon-filtered or unfiltered air demonstrated the protective effect of carbon-filtration on microarray data as indicated by Cy5 and Cy3 intensities. LOWESS normalization of the data was not able to completely overcome the effect of ozone-induced reduction of Cy5 signal. Experiments were also conducted to examine the effects of high humidity on microarray quality. Modest, but significant, increases in Cy5 and Cy3 signal intensities were observed after 2 or 4 hours at 98–99% humidity compared to 42% humidity. CONCLUSION: Simple installation of carbon filters in the laboratory air handling system resulted in low and consistent ozone levels. This allowed the accurate determination of gene expression by microarray using Cy5 and Cy3 fluorescent dyes
    • …
    corecore