4,301 research outputs found

    The importance of decadal-scale climate variability to wind-driven modulation of hypoxia in Chesapeake Bay

    Get PDF
    Millions of dollars are spent annually to reduce nutrient loading to Chesapeake Bay, with a fundamental goal of reducing the extent and severity of low dissolved oxygen (hypoxia) during the summertime months^1^. Yet despite recent reductions in nutrient loading, large volumes of the Bay continue to be impacted by hypoxia and anoxia during the summer months^2-3^. One obstacle to assessing efforts to improve water quality in the Bay and other estuarine systems is a complete understanding of the physical processes that modulate dissolved oxygen and the long-term variability of these processes. Here I analyze a 58-year data set of estimated hypoxic volume in the Bay^2^ and demonstrate the importance that wind direction plays in controlling the extent and severity of summertime hypoxia. This analysis indicates that wind direction explains a greater percentage of the observed inter-annual variation in hypoxic volume than estimates of nutrient loading. The implication is that physical processes play a dominant role in modulating hypoxia and that much of the increased hypoxia observed since the early 1980s can be attributed to changes in wind forcing that are the result of decadal-scale climate variability. These findings emphasize the importance of understanding the physical processes that modulate dissolved oxygen in coastal and estuarine systems and highlight the potential impact that climate change may have on water quality in Chesapeake Bay and other estuarine systems

    Raman Adiabatic Transfer of Optical States

    Full text link
    We analyze electromagnetically induced transparency and light storage in an ensemble of atoms with multiple excited levels (multi-Lambda configuration) which are coupled to one of the ground states by quantized signal fields and to the other one via classical control fields. We present a basis transformation of atomic and optical states which reduces the analysis of the system to that of EIT in a regular 3-level configuration. We demonstrate the existence of dark state polaritons and propose a protocol to transfer quantum information from one optical mode to another by an adiabatic control of the control fields

    The photoelectric effect without photons

    Get PDF
    Mathematical model of photoelectric effect without photon

    Distillation of Bell states in open systems

    Full text link
    In this work we review the entire classification of 2x2 distillable states for protocols with a finite numbers of copies. We show a distillation protocol that allows to distill Bell states with non zero probability at any time for an initial singlet in vacuum. It is shown that the same protocol used in non zero thermal baths yields a considerable recovering of entanglement.Comment: 10 pages, 3 figure

    Quantum Rabi model for N-state atoms

    Full text link
    A tractable N-state Rabi Hamiltonian is introduced by extending the parity symmetry of the two-state model. The single-mode case provides a few-parameter description of a novel class of periodic systems, predicting that the ground state of certain four-state atom-cavity systems will undergo parity change at strong coupling. A group-theoretical treatment provides physical insight into dynamics and a modified rotating wave approximation obtains accurate analytical energies. The dissipative case can be applied to study excitation energy transfer in molecular rings or chains.Comment: 5 pages, 3 figures + supplement (2 pages); to appear in Phys. Rev. Let

    Incoherent Mollow triplet

    Full text link
    A counterpart of the Mollow triplet (luminescence lineshape of a two-level system under coherent excitation) is obtained for the case of incoherent excitation in a cavity. Its analytical expression, in excellent agreement with numerical results, pinpoints analogies and differences between the conventional resonance fluorescence spectrum and its cavity QED analogue under incoherent excitation.Comment: 4 pages, 3 figure

    Physical controls on hypoxia in Chesapeake Bay : a numerical modeling study

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 118 (2013): 1239–1256, doi:10.1002/jgrc.20138.A three-dimensional circulation model with a relatively simple dissolved oxygen model is used to examine the role that physical forcing has on controlling hypoxia and anoxia in Chesapeake Bay. The model assumes that the biological utilization of dissolved oxygen is constant in both time and space, isolating the role that physical forces play in modulating oxygen dynamics. Despite the simplicity of the model, it demonstrates skill in reproducing the observed variability of dissolved oxygen in the bay, highlighting the important role that variations in physical forcing have on the seasonal cycle of hypoxia. Model runs demonstrate significant changes in the annual integrated hypoxic volume as a function of river discharge, water temperature, and wind speed and direction. Variations in wind speed and direction had the greatest impact on the observed seasonal cycle of hypoxia and large impacts on the annually integrated hypoxic volume. The seasonal cycle of hypoxia was relatively insensitive to synoptic variability in river discharge, but integrated hypoxic volumes were sensitive to the overall magnitude of river discharge at annual time scales. Increases in river discharge were shown to increase hypoxic volumes, independent from the associated biological response to higher nutrient delivery. However, increases in hypoxic volume were limited at very high river discharge because increased advective fluxes limited the overall length of the hypoxic region. Changes in water temperature and its control on dissolved oxygen saturation were important to both the seasonal cycle of hypoxia and the overall magnitude of hypoxia in a given year.The funding for this research was obtained from NSF Grant OCE-0954690 and supported by NOAA via the U.S. IOOS Office (Award Numbers NA10NOS0120063 and NA11NOS0120141) and managed by the Southeastern Universities Research Association.2013-09-1

    A diel method of estimating gross primary production: 2. Application to 7 years of near-surface dissolved oxygen data in Chesapeake Bay.

    Get PDF
    Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 123(11), (2018): 8430-8443, doi: 10.1029/2018JC014179.A diel method for estimating gross primary production (GPP) is applied to nearly continuous measurements of near‐surface dissolved oxygen collected at seven locations throughout the main stem of Chesapeake Bay. The data were collected through the Chesapeake Bay Interpretive Buoy System and span the period 2010–2016. At all locations, GPP exhibits pronounced seasonal variability consistent temperature‐dependent phytoplankton growth. At the Susquehanna Buoy, which is located within the estuarine turbidity maximum, rates of GPP are negatively correlated with uncalibrated turbidity data consistent with light limitation at this location. The highest rates of GPP are located immediately down Bay from the estuarine turbidity maximum and decrease moving seaward consistent with nutrient limitation. Rates of GPP at the mouth (First Landing Buoy) are roughly a factor of 3 lower than the rates in the upper Bay (Patapsco). At interannual time scales, the summer (June–July) rate of GPP averaged over all stations is positively correlated (r2 = 0.62) with the March Susquehanna River discharge and a multiple regression model that includes spring river discharge, and summer water temperature can explain most (r2 = 0.88) of the interannual variance in the observed rate of GPP. The correlation with river discharge is consistent with an increase in productivity fueled by increased nutrient loading. More generally, the spatial and temporal patterns inferred using this method are consistent with our current understanding of primary production in the Bay, demonstrating the potential this method has for making highly resolved measurements in less well studied estuarine systems.This paper is the result of research funded in part by NOAA's U.S. Integrated Ocean Observing System (IOOS) Program Office as a subcontract to the Woods Hole Oceanographic Institution under award NA13NOS120139 to the Southeastern University Research Association. All of the data analyzed in this paper are publicly available including the CBIBS data (http://buoybay.noaa.gov), the NCEP NARR data (https://www.esrl.noaa.gov/psd), and the Kd‐490 MODIS data (ftp://ftp.star.nesdis.noaa.gov/pub/socd1/ecn/data/modis/k490noaa/monthly/cd/). Model output analyzed in this paper is publicly available through the THREDDS server associated with the IOOS Coastal and Ocean Modeling Testbed (COMT) site (https://comt.ioos.us/projects/cb_hypoxia). Postprocessed and compiled data for all seven CBIBS locations including the interpolated values of incoming solar radiation and satellite‐derived Kd‐490 can also be download from the COMT site.2019-05-2

    The contribution of physical processes to inter-annual variations of hypoxia in Chesapeake Bay : a 30-yr modeling study

    Get PDF
    Author Posting. © Association for the Sciences of Limnology and Oceanography, 2016. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 61 (2016): 2243–2260, doi:10.1002/lno.10372.A numerical circulation model with a very simple representation of dissolved oxygen dynamics is used to simulate hypoxia in Chesapeake Bay for the 30-yr period 1984–2013. The model assumes that the biological utilization of dissolved oxygen is constant in both time and space in an attempt to isolate the role that physical processes play in modulating oxygen dynamics. Despite the simplicity of the model it demonstrates skill in simulating the observed inter-annual variability of hypoxic volume, capturing 50% of the observed variability in hypoxic volume (<2 mg L−1) for the month of July and 58% of the observed variability for the month of August, over the 30-yr period. Model skill increases throughout the summer suggesting that physical processes play a more important role in modulating hypoxia later in the summer. Model skill is better for hypoxic volumes than for anoxic volumes. In fact, a simple regression based on the integrated January–June Susquehanna River nitrogen load can explain more of the variability in the observed anoxic volumes than the model presented here. Model results suggest that the mean summer (June–August) wind speed is the single-most important physical variable contributing to variations in hypoxic volumes. Previous studies have failed to document the importance of summer wind speed because they have relied on winds measured at Patuxent Naval Air Station, which does not capture the observed inter-annual variations in wind speed that are observed by stations that directly measure wind over the waters of Chesapeake Bay.National Science Foundation Grant Number: OCE-1338518; National Oceanic and Atmospheric Association NOAA via the IOOS Office Award Grant Numbers: NA10NOS0120063, NA11NOS0120144

    Mixing of dissolved oxygen in Chesapeake Bay driven by the interaction between wind-driven circulation and estuarine bathymetry

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 5639–5654, doi:10.1002/2016JC011924.Field observations collected in Chesapeake Bay demonstrate how wind-driven circulation interacts with estuarine bathymetry to control when and where the vertical mixing of dissolved oxygen occurs. In the across-Bay direction, the lateral Ekman response to along-Bay wind forcing contributes to the vertical mixing of dissolved oxygen in two ways. First, the lateral tilting of the pycnocline/oxycline, consistent with the thermal wind relationship, advects the region of high vertical gradient into the surface and bottom boundary layers where mixing can occur. Second, upwelling of low-oxygen water to the surface enhances the atmospheric influx. In the along-Bay direction, the abrupt change in bottom depth associated with Rappahannock Shoal results in surface convergence and downwelling, leading to localized vertical mixing. Water that is mixed on the shoal is entrained into the up-Bay residual bottom flow resulting in increases in bottom dissolved oxygen that propagate up the system. The increases in dissolved oxygen are often associated with increases in temperature and decreases in salinity, consistent with vertical mixing. However, the lagged arrival moving northward suggests that the propagation of this signal up the Bay is due to advection.National Science Foundation Grant Number: OCE-13385182017-02-0
    corecore