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A Diel Method of Estimating Gross Primary Production:
2. Application to 7 Years of Near-Surface Dissolved
Oxygen Data in Chesapeake Bay

Malcolm E. Scully’

'Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, USA

Abstract A diel method for estimating gross primary production (GPP) is applied to nearly continuous
measurements of near-surface dissolved oxygen collected at seven locations throughout the main stem of
Chesapeake Bay. The data were collected through the Chesapeake Bay Interpretive Buoy System and span
the period 2010-2016. At all locations, GPP exhibits pronounced seasonal variability consistent
temperature-dependent phytoplankton growth. At the Susquehanna Buoy, which is located within the
estuarine turbidity maximum, rates of GPP are negatively correlated with uncalibrated turbidity data
consistent with light limitation at this location. The highest rates of GPP are located immediately down Bay
from the estuarine turbidity maximum and decrease moving seaward consistent with nutrient limitation.
Rates of GPP at the mouth (First Landing Buoy) are roughly a factor of 3 lower than the rates in the upper Bay
(Patapsco). At interannual time scales, the summer (June-July) rate of GPP averaged over all stations is
positively correlated (r* = 0.62) with the March Susquehanna River discharge and a multiple regression model
that includes spring river discharge, and summer water temperature can explain most (r* = 0.88) of the
interannual variance in the observed rate of GPP. The correlation with river discharge is consistent with an
increase in productivity fueled by increased nutrient loading. More generally, the spatial and temporal
patterns inferred using this method are consistent with our current understanding of primary production in
the Bay, demonstrating the potential this method has for making highly resolved measurements in less well
studied estuarine systems.

Plain Language Summary A new method for estimating gross primary production from in situ
dissolved oxygen data is applied to 7 years of data from Chesapeake Bay. Application of the method
highlights pronounced spatial and temporal variability consistent with previous studies employing more
labor intensive methods. The method shows significant promise for making high-quality measurements of
productivity with high temporal resolution in estuarine systems.

1. Introduction

The complex response of an estuarine ecosystem to eutrophication is governed by a wide range of physical
and biogeochemical processes (e.g., Cloern, 2001). The scientific and regulatory communities increasingly
rely on numerical models to study and understand these complex interactions, and methods to rigorously
evaluate the accuracy of these models are needed. Given the difficulty in making direct measurements of
biological rates, model skill often is assessed through comparisons with more easily measured parameters
such as dissolved oxygen. However, dissolved oxygen is strongly modulated by both physical and biological
processes. In Chesapeake Bay Scully (2013, 2016) demonstrated that a model with no biological variability
can simulate dissolved oxygen with high skill (Irby et al., 2016). High skill in simulating dissolved oxygen could
lead to the false conclusion that a model accurately represents the underlying biological processes.
Comparing biogeochemical models to observed biological rates such as primary production is a more
rigorous validation of these models.

In Chesapeake Bay the basic processes that control primary production are relatively well understood. It is
generally accepted that primary production is maximal during the summer months (Boynton et al., 1982;
Flemer, 1970) even though phytoplankton biomass is maximal in the spring (Malone et al., 1988). The size
and intensity of the spring bloom are largely controlled by inorganic nutrient inputs from the
Susquehanna River (Fisher et al., 1988, 1992; Harding, 1994; Harding et al., 1986; Malone et al., 1988). The
breakdown of algal biomass from the spring bloom regenerates nutrients that can sustain high primary
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Figure 1. Map of Chesapeake Bay, showing the location of the CBIBS buoys,
including Susquehanna (S), Patapsco (P), Annapolis (A), Goose’s Reef (GR),

Potomac (Pot), Stingray Point (SR) and First Landing (FL).

productivity throughout the summer months (Boynton & Kemp, 1985).
The out-of-phase relationship between primary production and
chlorophyll often is attributed to high rates of zooplankton grazing during
the summer months (Malone, 1992).

In addition to this well-established temporal variability in productivity,
Chesapeake Bay experiences pronounced spatial variability as well.
Primary production transitions from primarily light limited in the upper
Bay to nutrient limited in the lower Bay (Fisher et al., 1988; Harding et al.,
1986). Chesapeake Bay has a well-defined estuarine turbidity maximum
(ETM) that is typically located near the limit of salt (Sanford et al., 2001;
Schubel, 1968). The presence of the ETM and the associated light limitation
inhibits primary production in this region, despite the high loads of dis-
solved inorganic nutrients delivered by the Susquehanna River. The max-
imum in both primary production and phytoplankton biomass typically
is found downstream from the ETM, and decreasing levels of nutrients
reduce primary productivity in the lower estuary (e.g., Harding et al., 1986).

This basic conceptual model for the spatial and temporal variations in
productivity in Chesapeake Bay has emerged from decades of research.
Much of this understanding was derived from rates measured using
traditional bottle incubation techniques. Bottle incubations cannot
provide temporal resolution at most locations without a significant effort
to reoccupy a given location with a ship. There are a few notable
exceptions where long-term measurements of primary production that
resolve both seasonal and interannual variability have been made
(Gallegos, 2012, 2014; Gallegos & Neale, 2015), but these data sets are rare.

Measuring rates of primary production from in situ instrumentation
represents a potentially powerful alternative to measuring rates from
bottle incubations. Methods that quantify primary production by
measuring diel changes in oxygen concentration have a long history of
use in aquatic ecosystems (e.g., Odum, 1956). A primary obstacle to the
successful use of these methods in estuaries is the contribution that
physical processes (vertical mixing and horizontal advection) have on
changes in oxygen concentration (Boynton & Kemp, 1985; Howarth

et al, 1992; Swaney et al., 1999). Thus, even though we are collecting data with unprecedented spatial and
temporal resolution due to advancements in instrument technology and the proliferation of observing
systems, our ability to measure basic biological rates has not kept pace.

In this paper, a proposed diel method for estimating gross primary production (GPP; Scully, 2018) is applied to
7 years of observing data collected through the Chesapeake Bay Interpretive Buoy System (CBIBS). Data from
seven stations spanning the full estuarine gradient are analyzed providing information about spatial
variations in GPP and temporal variations at a variety of time scales. While a companion paper (Scully,
2018) focuses on evaluating the accuracy of the method by applying it to numerical model output, the goal
of this paper is to compare the insight gained from the application of the method to field data to the
well-established conceptual model of productivity in Chesapeake Bay. While this is not a validation of the
method, it demonstrates the potential of the method for providing fundamental insights into the underlying

biological processes.

2. Methods

2.1. Data

The CBIBS program maintains 10 buoys throughout the Chesapeake Bay. This paper analyzes data collected
between 1 January 2010 and 31 December 2016 at seven locations along the main stem of the Bay:
Susquehanna, Patapsco, Annapolis, Goose’s Reef, Potomac, Stingray Point, and First Landing (Figure 1). The

SCULLY

8431



AAAAAAAAAAAAAA
'AND SPACE SCiENCE

Journal of Geophysical Research: Oceans 10.1029/2018JC014179

Susquehanna Buoy is not deployed during the winter months to avoid damage by ice, but with a few excep-
tions, nearly continuous data are available at all the other locations. Each buoy makes hourly observations of
temperature, salinity, dissolved oxygen, chlorophyll fluorescence, and turbidity with a WETLabs WQM,
equipped with an antibiofouling injection system and optical wipers. The WQM is located in the buoy well
~0.5 m below the water surface. All of the data used here are available for download through the CBIBS web-
site (http://buoybay.noaa.gov). The dissolved oxygen data do not have any obvious data quality issues, and
the hourly data downloaded from the CBIBS website are used. The quality of the chlorophyll and turbidity
data is harder to assess, and there are periods when obvious sensor fouling results in inaccurate data.
While these data are not essential to the analysis below, they are used for both qualitative interpretation
and quantitative estimates for comparison with previous studies. In an attempt to remove any spurious data
very simple criteria are used; any chlorophyll data below a reported value of 1 pug/L and any turbidity data
greater than 35 NTU are excluded from the analysis.

Measurements of solar irradiance are not collected at the CBIBS buoys. Instead, the downward shortwave
radiation flux from the National Centers for Environmental Prediction North American Regional Reanalysis
(NARR) model (https://www.esrl.noaa.gov/psd) is used to provide an estimate of incoming radiation. The
NARR model has 32-km spatial resolution and provides output every 3 hr. For this analysis, the model output
is linearly interpolated in space to best match the locations of the CBIBS buoys and interpolated in time to
provide hourly estimates of irradiance to match the frequency of the CBIBS data. While in situ estimates of
light attenuation are not made at the CBIBS buoys, estimates of the large-scale diffuse light attenuation
coefficient at 490 nm (Kd-490) are available from Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite data (ftp://ftp.star.nesdis.noaa.gov/pub/socd1/ecn/data/modis/k490noaa/monthly/cd/;
Wang et al., 2009). These estimates have a spatial resolution ~1 km and a temporal resolution of ~30 days.
The Kd-490 data are used in an attempt to provide quantitative estimates of in situ light. As with the NARR
data, the satellite estimates of Kd-490 are interpolated in both time and space to match the CBIBS data.

2.2. Analysis

A detailed description of the diel method is provided in a companion paper (Scully, 2018). However, for clarity
the basic method is repeated here in abbreviated form. The method is based upon the conservation equation
for oxygen

%ZGPP*CR*U;V02+6—62KZ% (1)
where the time rate of change of oxygen (first term on left-hand side) is driven by biological production by
GPP and consumption by community respiration (CR). Advection (third term on right-hand side) and the
divergence in vertical turbulent flux (fourth term) are the physical processes that contribute to temporal
variations in oxygen. Here the vertical flux is represented as the product of an eddy viscosity (K,) and the
vertical gradient in oxygen. At the surface (z = 0), the flux (Fs,f) is equal to the air-sea gas exchange, but it
is the divergence in this flux that directly contributes to variations in oxygen. As discussed in Scully (2018),
only in an integrated sense and for conditions where there are no vertical gradients in oxygen within the
surface mixed layer can the divergence in vertical flux at any discrete point be estimated using bulk
parameterization (e.g., Fsurf/Zmix)-

The method relies on a simplified representation of equation (1) expressed as

(0] E
2 = Py tanh (z—

ot > + 40, (2)

m

where the first term on the right-hand side of (2) represents GPP and 40, represents the sum of all the
remaining terms including the contributions of advection, the vertical divergence in turbulent oxygen flux,
and CR. The method assumes that 40, can be estimated simply as the observed time rate of change of
oxygen during the nighttime hours. The estimate of 40, does not distinguish between the contributions
of physical processes and CR, so the method can only directly estimate GPP. After removing 40,, a
two-parameter least squares regression between the observed time rate of change of oxygen and incoming
solar radiation is performed to provide estimates of the maximum photosynthetic rate (P,,) and the slope (a)
of the light-limited portion of the photosynthesis-irradiance (PE) curve. The ratio P,/a sets the saturating
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a) Example of surface oxygen from Goose’s Reef buoy
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Figure 2. (a) Example of near-surface dissolved oxygen data (back line) from the Goose’s Reef buoy from July 2013 com-
pared to saturation value (gray line) based on the observe temperature and salinity. (b) The observed time rate of
change of the oxygen date in (a) bin averaged as a function of the surface irradiance. (c) The observe timed rate of
change of the data in (a) bin averaged as a function of the hour of the day (black line) to highlight the diurnal variability
compared to the estimated primary production (GPP + CR) from the fit shown in (b). The vertical lines in (b) represent
95% the confidence interval, and the gray line is the inferred PE curve from the best fit to the data. GPP = gross primary
production; CR = community respiration; PE = photosynthesis-irradiance.

irradiance (Ex) where phytoplankton growth transitions from light-limited (E < Ej) to light-saturated growth.
In order to avoid aliasing by horizontal currents driven by tidal advection, Scully (2018) recommends applying
the method to 15 days of data. This not only minimizes the correlation between semidiurnal and diurnal
processes but also provides a sufficient time window to statistically related diurnal changes in oxygen to
diurnal variations in light. In this analysis the estimate of 40, is made by averaging 00,/0t for all
conditions when light is zero over a 15 day period, denoted 462, where the hat indicates that the value is
obtained when E = 0.

To quantify spatial and low-frequency (monthly) variations in light availability, the vertical profile of light is
estimated as

E = 0.43 Eq exp[Kq4Z] (3)

where Ej is the downwelling shortwave radiation from the NARR model, K, is the attenuation coefficient for
light estimated using the Kd-490 value of from the MODIS satellite data and 0.43 is the fraction of the down-
ward shortwave radiation that is available for photosynthesis (Fennel et al., 2006). Estimates of the PE curve
parameters are typically normalized by the chlorophyll-a concentration, which is denoted with a superscript
B (P,,E and &f).

3. Results
3.1. Example of the Method

To illustrate the application of the method, data from the Goose’s Reef buoy collected during July 2013 are
presented in Figure 2a. During this period the observed dissolved oxygen concentration exhibits

SCULLY

8433



Ar |

AVV .
100 Journal of Geophysical Research: Oceans 10.1029/2018JC014179
a) Susquehanna 10 b) Patapsco
3 B
(o] (o]
E 2 E 5 /\(\
o Y
Qo (@)
(o] D
* A 0
2011 2013 2015 2017 2011 2013 2015 2017
¢) Annapolis d) Goose’s Reef
10 6
o o 4
E 5 E
N N
S S 2
A , . LR RWRT A
2011 2013 2015 2017 2011 2013 2015 2017
e) Potomac 4 f) Stingray Point
8 2
(] (2]
E 2 E 2
Y N
[+] l n [+]
0 : - 0 ot
2011 2013 2015 2017 2011 2013 2015 2017
Figure 3. Estimates of the volumetric rate of community respiration from application of the diel method to surface oxygen
data at six of the Chesapeake Bay Interpretive Buoy System buoy locations. Estimates of the photosynthesis-irradiance
curve parameters (P, and a) have 15-day temporal resolution and are applied to the hourly surface irradiance data. The
resulting time series is smoothed with a 25-day boxcar filter to remove higher-frequency variability. Gaps in each plot
represent periods of no data or negative values of community respiration. Data from First Landing are not shown.
pronounced diurnal variability ranging from roughly 100% saturation during the early morning hours to
values in excess of 160% saturation during late afternoon. The time rate of change of oxygen during this
period displays a functional form consistent with the assumed model
7 ' ' ' ' (Figure 2b) including the basic diurnal variability (Figure 2c).
—@— Susquehanna
6- —l— Patapsco i
49— Annapolis R
J Goose's Reef 3.2. Seasonal Variability
sl P Potomac ] X .
Stingray Even though the parameters of the PE curve are only estimated with
—% First Landing 15-day resolution, applying the estimates of the PE curve to the hourly
=4 1 surface irradiance from the NARR model provides estimates of GPP with
§N higher-frequency variability. However, since variations in P,, and a with
@ 3 1 frequencies higher than 15 days are not resolved, the hourly estimates
of GPP are averaged with a 15-day boxcar filter providing estimates of
2 1 GPP at the seven CBIBS buoys for the period 2010-2016 (Figure 3). At all
locations there is clear seasonal variability with rates of GPP increasing
1+ 1 throughout the spring, reaching maximum values in middle July before
decreasing during late summer and into the fall (Figure 4). At seasonal
0 time scales, estimates of GPP vary by more than a factor of 30 at all loca-

Figure 4. Monthly averaged values of gross primary production averaged
over 7 years at all seven Chesapeake Bay Interpretive Buoy System buoy
locations including Susquehanna (blue circles), Patapsco (green squares),
Annapolis (red diamonds), Goose’s Reef (cyan pentagons), Potomac (purple
arrows), Stingray Points (gold triangles), and First Landing (black hexagons).

tions consistent with temperature-dependent phytoplankton growth. To
illustrate this temperature dependence, the data at each station are bin
averaged as a function of temperature (Figure 5). These bin-averaged data
are fit with a least squares regression after log transforming the rates of
GPP. This log linear regression is used to calculate the Qo value for each
station. The estimates of Q; range from 1.78 to 3.55. The highest Q; value
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of 3.55 was found at the Susquehanna Buoy, and excluding this value
1 reduces the range to 1.78-2.58.

1 While the seasonal cycle of GPP at all seven locations is consistent with a
temperature-dependent physiological process, there are some notable
deviations. At the Susquehanna buoy GPP is reduced during early spring
and peaks somewhat later than temperature. As a result, the estimated
| productivity at the Susquehanna buoy is much lower than all the other
locations in early spring but exceeds the estimated values at the two
southernmost buoys later in the summer (Figure 4). This is most likely
1 due to the seasonal progression of light limitation at the Susquehanna
location (see below). High river discharge and the associated sediment
loading in the spring give way to lower sediment concentrations in the
1 summer, when water temperature increases. The increase in GPP from
, , ( spring to summer is enhanced by greater water clarity and less light limita-

Temperature [°C]

- &2 &2 9 tion as water temperatures rise. As a result, the higher Q¢ value at the
Susquehanna buoy most likely is the result of the correlation between

Figure 5. Values of GPP, averaged as a function of water temperature, at all ~ water temperature and light availability at this location and not a true phy-
seven CBIBS buoy locations. The symbols are the same as in Figure 4, and the  sjological temperature response. In contrast, at all of the other locations

vertical lines represent the 95% confidence interval. The solid lines are the
best fit log linear regression, and the values of Qq¢ reported in the legend are
based on these fits. GPP = gross primary production; CBIBS = Chesapeake

Bay Interpretive Buoy System.

GPP peaks earlier than temperature. At these locations GPP is shifted rela-
tive to temperature so that GPP is generally higher than the exponential fit
during spring and early summer and lower than the exponential fit during
late summer and early fall. This deviation from strictly Qo behavior is con-
sistent at all six locations down Bay from the Susquehanna location and could be explained by the seasonal
development of nutrient limitation.

Consistent with the Q¢ variability in GPP, P,, exhibits an exponential relationship with temperature at all
locations (Figure 6a). The highest values of P,, are found at the Patapsco buoy and generally decrease
down Bay. Values at the Susquehanna buoy are reduced by ~40% as compared to Patapsco. Estimates
of a generally increase with P,,. At seasonal time scales, P,, increases more rapidly than o so that the
saturating irradiance (E,) increases roughly linearly with temperature (Figure 6b). This results in a seasonal
pattern with the largest values of E, occurring during the late summer and early fall. Although
temperature and insolation are correlated, temperature generally peaks later in the year than light
intensity. The seasonal changes in E; are more strongly correlated with temperature than insolation,
suggesting that this seasonal variability is primarily controlled by temperature and does not reflect light
adaptation (Pennock & Sharp, 1986).

a) Pn, b) E, = P, /a
1500
40
|
1000
R
o
£
w  500¢f
=
0
0 10 20 30 0 10 20 30
Temperature [°C] Temperature [°C]

(@ s WP A %GR P Pt A srR %k FLJ

Figure 6. Estimates of the photosynthesis-irradiance curve parameters including (a) the maximum phytoplankton growth
are (P,,) and (b) the saturating irradiance (Ex = P,/a), bin averaged as a function of temperature. Symbols are the same as in
Figure 4, and the vertical bars represent the 95% confidence interval.
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Figure 7. Normalized values of the photosynthesis-irradiance curve parameters including (a) the maximum phytoplankton
growth rate (PmB) and (b) the initial slope of the photosynthesis-irradiance curve under light-limited conditions (aB) for
each station, bin averaged by month. The different symbols, with represent the individual stations, are the same as in
Figure 4. Bay-wide (all seven stations) averages of the same data are represent in (c) and (d), bin averaged as a function of
temperature. In (c) and (d), vertical lines represent the 95% confidence interval and curve represented the best fit regres-
sion to the data. The data have been converted to carbon-based units using a photosynthetic quotient of 1.4 for com-
parative purposes.

To facilitate comparison with previous bottle incubation studies, the normalized parameters of the PE curve
have been converted to carbon units using a photosynthetic quotient (O,:C) of 1.4 (Laws, 1991), so that PmB
has units [ngC] [ugchl h]~" and o has units [ugCl [ngchl hy ! [uEm_2 s7'17". At seasonal time scales, P,,,®
ranges from 1 to 35 (Figure 7a), with the largest values during summer in the upper and middle Bay.
Monthly averaged values of o from the proposed diel method range from 0.006 to 0.06 (Figure 7b). While
there are differences in the magnitude of P,,,2 between the seven stations, a clear logarithmic relationship
with temperature is observed at all stations. Aggregating the data from all seven stations yields a single
logarithmic relationship with temperature that can reasonably capture most of the data (Figure 7c).
Consistent with the nonnormalized values of , values of a® vary linearly with temperature and a simple linear

regression can reasonably capture this variability when the data from all seven stations are
averaged (Figure 7d).

3.3. Spatial Variability

The highest rates of GPP are found at the Patapsco buoy and generally decrease moving down Bay
(Figure 8a). The annual mean rate of GPP at the Susquehanna buoy is more than a factor of 2 lower than
at Patapsco but somewhat larger than the annual mean rate at First Landing. The general spatial variability
in GPP is consistent with the overall spatial variability in chlorophyll concentration, which also is highest at
Patapsco and generally decreases moving down Bay (Figure 8b). At seasonal time scales GPP is not
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Figure 8. Averaged values of (a) GPP, (b) chlorophyll-a concentration, (c) maximum phytoplankton growth rate (P,,), (d)
slope of light-limited PE curve (a), (d) normalized phytoplankton growth rate (P,,,), (e) normalized slope of light-limited
PE curve (aB), (f) saturating irradiance (Ex = Pp,/a), and (g) average irradiance normalized by saturating irradiance (E/Eg). Data
are plotted as a function of station that are averaged over all available data. Data in (d) and (e) have been converted to

carbon-based units using a photosynthetic quotient of 1.4 for comparative purposes. GPP = gross primary production;
PE = photosynthesis-irradiance.

SCULLY 8437



ra\ 1% .
100 Journal of Geophysical Research: Oceans 10.1029/2018JC014179
a) Susquehanna River Discharge b) Uncalibrated Turbidity Data
3500+ P ———————————
3000 1 25|
2500' 20,
2000 ®
ml) ':_) 15}
€ 1500} z
1000 e
500 1 57
0 1 I I L n I I
J AM J J A S O ND J
2015
d) GPP vs Turbidty
5 . 2
4_
oog mg 3r
E E
[8Y [aY
e S 2f
1t
T 0 : : ' :
AM J J A S OND J 0 5 10 15 20
2015 NTUs

Figure 9. Example of light limitation at the Susquehanna buoy location including (a) Susquehanna River discharge at the
USGS Conowingo gauging stations for 2015, (b) uncalibrated turbidity data from Susquehanna buoy for 2015, and (c)
estimated GPP for 2015 showing strong negative correlation with water clarity. All (2010-2016) of the estimated of GPP and
15-day average turbidity data from the Susquehanna buoy are plotted in panel (d) highlighting light limitation at this
location. USGS = U.S. Geological Survey; GPP = gross primary production.

significantly correlated with chlorophyll measured at the buoys. The along-estuary variability in both P,, and
o mirrors that of GPP (Figures 8c and 8d). However, both P,,,% and a® are more spatially uniform and generally
decrease moving down Bay (Figures 8e and 8f). Average values of E, increase somewhat in the down Bay
direction, but the spatial trend is not clear and annual average values are all within ~15% of each other
(Figure 8g). Using the satellite-derived values of Kd-490 to estimate light availability at z = —0.5 m
suggests that light limitation (E/E) decreases moving down Bay but that all locations are light limited on
average (Figure 8f).

The general down Bay decrease in the normalized parameters of the PE curve is consistent with increasing
nutrient limitation moving down Bay away from the Susquehanna River. At the Susquehanna buoy the low
values of GPP and chlorophyll concentrations appear to be the result of a high degree of light limitation at
this location. Figure 9 shows estimates of GPP and the uncalibrated turbidity data for 2015 from the
Susquehanna buoy, along with the estimated Susquehanna River discharge from the U.. Geological
Survey Conowingo gauging station. In 2015 the buoy was deployed in late March during high discharge
conditions that were associated with high turbidity. Estimates of GPP in the spring are low and only begin
to increase in May as the turbidity decreases (Figure 9c). GPP continues to increase during the early sum-
mer before decreasing again during a high turbidity event in late June and early July. The midsummer tur-
bidity event coincides with elevated Susquehanna River discharge and estimates of GPP decrease by more
than an order of magnitude from middle June to early July. As the turbidity levels decrease in late July,
GPP values again increase before decreasing in late fall consistent with the typical season pattern. At
the Susquehanna buoy all estimates of GPP (2010-2016) show a negative relationship with the uncali-
brated turbidity data (r = —0.49; Figure 9d), consistent with light availability controlling GPP at
this location.
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Figure 10. Comparison of GPP estimates for 2011 (black line/circles) and 2016 (gray line/squares) including (a) the
Susquehanna River discharge at the USGS Conowingo gauging station and GPP at each station averaged over (b) May-
June, (c) July-August, and (d) September-October. Elevated spring river discharge in 2011 increases early summer GPP, but
high discharge and sediment loading during tropical storms in fall 2011 suppress GPP in the upper Bay. GPP = gross pri-
mary production; USGS = U.S. Geological Survey.

3.4. Interannual Variability

While the seasonal cycle is a robust feature every year, there are significant interannual differences (e.g.,
Figure 3). To highlight this variability, the estimates of GPP for 2011 and 2016 are compared (Figure 10).
For the 7 years of data analyzed here, 2011 had the highest spring river discharge and 2016 had the lowest.
In addition, the passage of Hurricane Irene and Tropical Storm Lee resulted in historic inputs of freshwater
and sediment to the Bay during the late summer and early fall of 2011 (Palinkas et al., 2014). The high river
discharge and associated sediment loading during the spring of 2011 appear to suppress GPP at the
Susquehanna location in late spring (Figure 10a). However, estimates of GPP for late spring and early summer
in 2011 are elevated at all of the other locations in comparison to 2016. By middle to late summer estimates of
GPP for 2011 and 2016 are similar at all locations.

While the high spring river discharge appears to have enhanced early summer GPP at most non-ETM stations,
the historic sediment inputs in early fall of 2011 appear to have suppressed GPP in the middle and upper Bay.
Estimated rates of GPP for the fall of 2011 are reduced compared to 2016 at the Susquehanna, Patapsco, and
Annapolis locations (Figure 10d). Satellite images taken immediately after the passage of Tropical Storm Lee
show a sediment plume from the Susquehanna River extending to at least the mouth of the Patuxent River,
and sediment cores revealed a distinct flood deposit over the region north the Goose’s Reef buoy (Palinkas
et al,, 2014). The historic sediment inputs associated with this storm appear to have extended the region
of light limitation significantly down Bay compared to the traditional location of the ETM.

The control of early summer GPP by nutrient loading from the Susquehanna River is supported by the corre-
lation between interannual variations in Bay-wide rates of GPP for the months June and July with the mean
Susquehanna River discharge over the month of March (Figure 11a). A logarithmic relationship based on
March river discharge can explain 62% of the variance in the interannual variation in bay-wide GPP averaged
over the months June and July. A multiple regression model that includes March Susquehanna River dis-
charge and the mean summer (June-July) water temperature explains 88% of the variance in the observed
interannual variability (Figure 11b). In contrast to summer, interannual variations in spring (March-April)
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Figure 12. Correlation between incoming solar radiation (Eg) and the time
rate of change of dissolved oxygen for 2013, averaged (a) annually at each
station and (b) over all stations for each month. The black circles are the
CBIBS buoy observation, and the gray squares are the model output of Scully
(2018) for the same locations. For this analysis the correlations are calculated
after the date and the model output was averaged as function of the day
for each month. At all locations and for all months, the observed time rate of
change is more highly correlated with the modeled irradiance than the
actual model output. CBIBS = Chesapeake Bay Interpretive Buoy System.
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Figure 11. Interannual variability in Bay-wide (all seven stations) GPP averaged over the months of June and July plotted as
a function of (a) March Susquehanna River discharge (Qspr) and (b) multiple regression model that includes March
Susquehanna River discharge and June-July water (Ts,m). In (a), the solid line is the best fit log linear regression.

GPP = gross primary production.

GPP are negatively correlated with spring Susquehanna River discharge (r = —0.68). This presumably reflects
light limitation caused by the increased sediment load that accompanies elevated river discharge. The
correlation between the uncalibrated turbidity data and GPP in spring is also negative (r = —0.64), and a
simple multiple regression model that includes spring turbidity data and spring water temperature can
explain 83% of the interannual variance in spring GPP. While the statistics of such small data sets must be
interpreted with care, the inferred controls on primary production are consistent with previous studies.

4, Discussion

The application of the diel method to 7 years of observations from Chesapeake Bay presented above
provides insights that are generally consistent with the basic conceptual understanding of productivity for
this well-studied estuarine system. Lomas et al. (2002) found that Q¢
values for pelagic processes in Chesapeake Bay fell within a range of

T

T

1.7-3.4. The estimates of Q;¢ from six of the seven CBIBS locations fall

/.—;\/‘\g within this range. The approximately linear relationship between o and
I = . - _ | P, is consistent with previous data collected in Chesapeake Bay
[ - 8 | (Harding et al., 1986). Gallegos (2012) reported seasonal variations in
r “ [ @ cBBSData [E  Numerical Model ] monthly averaged values of P, of ~1-5 in a shallow subestuary of
s s . ' s ' ' Chesapeake Bay, with individual estimates as high as ~20. The values of

s P A GR Pot SR FL 5 S
P, reported here exhibit the same seasonal pattern reported by
b) Correlation between 30,/gtand Eobymonth Gallegos (2012) but extend to higher overall values. Harding et al. (1986)
| | reported P,,Z values of 1.2-15.2 for data collected in the main stem of
_ ae _ Chesapeake Bay, so the maximum monthly averaged values of P’
I = - - | reported here are roughly a factor of 2 larger than that study. The monthly
| = 8 B—a ] averaged values of o from the proposed diel method range from 0.006 to
r B [ @ cBBSData E Numerical Model 1 0.06 (Figure 7b), which mostly falls within the range of values (0.01-0.132)

NIV By e e VR reported by Harding et al. (1986).
2013

Even though the estimates presented in this paper are generally consis-
tent with previous studies employing more traditional methodology, there
are notable differences. These differences could result from potential
biases associated with the method as outlined in Scully (2018). One source
of bias is the contribution of the divergence in vertical oxygen flux to diur-
nal variations in oxygen. The sign of this bias is a function of vertical posi-
tion, with underestimated rates of GPP found near the surface and
overestimates found near the base on the surface mixed layer. The
reported depth of the measurements collected at the CBIBS buoys is
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Figure 13. Time rate of change of dissolved oxygen normalized by the estimated maximum phytoplankton growth rate
(P plotted as a function of light availability normalized by the estimated saturating irradiance (Ex = Pp,/a) for (a)
Patapsco, (b) Annapolis, (c) Goose’s Reef, (d) Potomac, (e) Stingray point, and (f) First Landing. The black circles are the
observations at the CBIBS buoys, and the gray squares are the numerical model output of Scully (2018) for the same
locations. Only data from 2013 are used, and values are bin averaged as a function of E/Ey. Vertical lines represent the 95%
confidence interval, and continuous line is the assumed PE curve. The field data are generally more consistent with the
assumed PE curve than the numerical model output. CBIBS = Chesapeake Bay Interpretive Buoy System;

PE = photosynthesis-irradiance.

z=—0.5 m. Scully (2018) found that data from this vertical position underestimated the actual rate of GPP by
up to a factor of 2 for an assumed exponential profile of GPP. For an exponential profile, the vertical location
with the least bias is expected to occur roughly at z= 1.54/K,, the depth where the local rate of GPP is equal to
the average over the euphotic zone.

Average values of Kd-490 are 2.4 at the Susquehanna buoy and decrease moving down Bay with the four
southernmost buoys all falling between 0.8 and 0.9. Based on these averaged values, all the measurements
were collected closer to the surface than the location with minimum bias. Data from the upper Bay
regions where K is higher are closer to this vertical position than those in the lower Bay where Kj is lower,
suggesting greater underestimation of GPP in the lower Bay. Therefore, it is possible that some of the
down Bay decrease in GPP inferred from the diel method is caused by increasing underprediction of
GPP moving down Bay. However, Scully (2018) also suggested that magnitude of the bias was greater
in regions where the surface mixed layer depth (z.;,) exceeded the photic depth (z.,). In the low-salinity
upper Bay region near the Susquehanna buoy the model predicted z,ix > z., and the biases were larger
in this region. However, the CBIBS buoys are much closer to the optimal depth (e.g., z = 1.54/Ky), so this
bias may be less than for the model simulations.

In the data presented above values of P,,% were roughly a factor of 2 larger than the previously published data
from Chesapeake Bay. This could simply reflect natural spatial and temporal variability. However, the
estimates presented here use a number of highly uncertain parameters including buoy-derived estimates
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of chlorophyll-a concentration, light availability inferred from an atmospheric model, satellite estimates of K,
and a fixed photosynthetic quotient. Systematic biases in any of these parameters could explain the higher
values of P,,,% that are inferred in this paper. The analysis of Scully (2018) suggests that the diel estimates of
both P,,, and a may be biased low for data collected near the ocean surface. Estimates of of are generally con-
sistent with previously published values, but P,,.% is generally larger, so this is unlikely the cause of this discre-
pancy. It is important to note that for the light-limited conditions inferred from this data, estimates of GPP are
much more sensitive to the value of « than P,,,. Furthermore, estimates of a are likely to be more accurate for
light-limited conditions because the light-saturated conditions (E > E,) needed to resolve P,, might not be
experienced in situ.

Scully (2018) suggested that errors associated with vertical mixing are enhanced when GPP varies strongly in
the vertical and that a more uniform vertical distribution of GPP would reduce errors associated with vertical
mixing. There are number of reasons why the natural profile of GPP might be more vertically uniform than the
typically assumed exponential profile. Even though the analysis presented above suggests that conditions in
Chesapeake Bay are strongly light limited, it is possible that the vertical variation in GPP is more uniform than
an exponential profile and that the contributions of vertical mixing in the model of Scully (2018) are too high.
Evidence for this comes from a simple analysis where the observed time rate of change of oxygen is
correlated with the NARR model of incoming solar radiation. At all seven locations and in every month of
the year, the correlation between the observed time rate of change of oxygen and the modeled NARR solar
radiation is higher than for the same analysis performed on the model output of Scully (2018) (Figure 12). So
even though the numerical model uses the NARR solar radiation to force GPP in the model, the resulting time
rate of change of oxygen in the model has a lower correlation with E, than the data. A plausible explanation
for this is that the contribution of vertical mixing is much greater in the model because of the assumed
exponential profile of GPP that is employed.

In addition to decreasing the correlation between the time rate of change of oxygen and the incoming solar
radiation, the contribution of advection and mixing also could alter the consistency of the observed 00,/0t
with the assumed functional form of the PE curve (e.g. equation (2)). At all seven CBIBS locations the
observed 00,/6t data are highly consistent with the proposed hyperbolic tangent formulation when
normalized by the estimated values of P,, and a (Figure 13). An identical analysis performed on the model
output of Scully (2018) is less consistent, even though the model uses this exact numerical representation
for the PE curve. Deviations from this curve for the numerical model must be caused by advection or mixing
suggesting that these physical processes are overestimated in the model as compared to the data. This is not
to say that the estimates of GPP presented in this paper are without error, but the magnitude of the errors
presented in Scully (2018) may represent an upper bound.

5. Conclusion

In this paper an in situ diel method for estimating GPP is applied to 7 years of surface oxygen data in
Chesapeake Bay. Application of the method provides a detailed description of the spatial and temporal
variations in GPP. At seasonal time scales inferred rates of GPP vary in a manner consistent with
temperature-dependent phytoplankton growth at all stations. Q¢ values outside of the ETM region fall
within a relatively narrow range from 1.78 to 2.58, consistent with previous estimates made in this estuary
(Lomas et al., 2002). While the clear seasonal cycle is observed at all locations, there are systematic deviations
from purely temperature-dependent process. At the northernmost location within the ETM (Susquehanna),
GPP is depressed in spring and elevated in late summer consistent with light limitation driven by the high
TSS loads that accompany elevated spring river discharge. At all non-ETM locations the deviations from
Q,o are opposite with GPP depressed in late summer relative to a purely temperature-dependent rate,
consistent with nutrient limitation.

The transition from light-limited conditions in the ETM to nutrient limitation down Bay is well captured in this
analysis. Data from the Susquehanna buoy show clear evidence for light limitation at a variety of time scales
controlled by sediment input from the Susquehanna River. The highest rates of GPP are located at the
northernmost location outside of the ETM (Patapsco) and generally decrease down Bay consistent with
increasing nutrient limitation. The importance of inorganic nutrient loading from the Susquehanna River is
highlighted by the positive correlation between interannual variability in summer (June-July) GPP and the
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March Susquehanna River discharge. This is consistent with the basic understanding of what controls primary
production in Chesapeake Bay and provides a direct observational link between measured in situ rates of GPP
and inorganic nutrient loads. A multiple regression model that includes spring Susquehanna River discharge
and summer water temperature can explain 88% of interannual variance in Bay-wide GPP over the 7 years
that are analyzed. The fundamental description of the spatial and temporal variability in GPP obtained
through the application of this method is consistent with the basic conceptual model of productivity that
has emerged from decades of research on Chesapeake Bay. This consistency with previous work provides
confirmation of the utility of the proposed method and highlights its potential for use in other less studied
estuarine systems. Furthermore, this method provides spatially and temporally resolved estimates of GPP
that can be used to more rigorously assess numerical biogeochemical models, which too often are not
validated against the fundamental biological rates they are designed to simulate.
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