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Abstract

A numerical circulation model with a very simple representation of dissolved oxygen dynamics is used to

simulate hypoxia in Chesapeake Bay for the 30-yr period 1984–2013. The model assumes that the biological

utilization of dissolved oxygen is constant in both time and space in an attempt to isolate the role that phys-

ical processes play in modulating oxygen dynamics. Despite the simplicity of the model it demonstrates skill

in simulating the observed inter-annual variability of hypoxic volume, capturing 50% of the observed vari-

ability in hypoxic volume (<2 mg L21) for the month of July and 58% of the observed variability for the

month of August, over the 30-yr period. Model skill increases throughout the summer suggesting that physi-

cal processes play a more important role in modulating hypoxia later in the summer. Model skill is better for

hypoxic volumes than for anoxic volumes. In fact, a simple regression based on the integrated January–June

Susquehanna River nitrogen load can explain more of the variability in the observed anoxic volumes than

the model presented here. Model results suggest that the mean summer (June–August) wind speed is the

single-most important physical variable contributing to variations in hypoxic volumes. Previous studies have

failed to document the importance of summer wind speed because they have relied on winds measured at

Patuxent Naval Air Station, which does not capture the observed inter-annual variations in wind speed that

are observed by stations that directly measure wind over the waters of Chesapeake Bay.

Over the last half-century, observations have documented

that the deep bottom waters of Chesapeake Bay become

depleted of dissolved oxygen (DO) for a significant fraction

of the summer months (Hagy et al. 2004; Kemp et al. 2005;

Murphy et al. 2011). The spatial and temporal extent of low

DO (hypoxic) regions has a number of significant conse-

quences for ecosystem health and function (Breitburg et al.

1997; Breitburg 2002). While the earliest direct observations

of low DO (hypoxia) were made during the 1930s (New-

combe and Horne 1938), there is considerable evidence that

the extent and severity of hypoxic conditions increased sub-

stantially during the early 1980s (Cooper and Brush 1991;

Boesch et al. 2001; Liu and Scavia 2010). While it is general-

ly accepted that this increase was the result of increased

anthropogenic nutrient loads to the Bay, studies that

attempt to statistically relate the inter-annual variations in

hypoxic volume to nutrient loading often fail to explain the

majority of the variability (Hagy et al. 2004; Scully 2010a;

Murphy et al. 2011). These studies often explain a signifi-

cantly larger fraction of the inter-annual variability of hyp-

oxic volume when they consider physical factors such as

variations in wind forcing.

Even though these statistical studies provide evidence

that both biological and physical processes play an impor-

tant role in controlling hypoxia in Chesapeake Bay, quanti-

fying the relative importance of these processes remains a

significant challenge. This difficulty arises because there is

considerable covariance between the biological and physical

processes that modulate DO at both seasonal and inter-

annual timescales. A clear example of this covariance is the

strong correlation between nutrient inputs and river dis-

charge. Increased river discharge delivers more nutrients to

the system, providing the fuel for phytoplankton growth

that ultimately leads to hypoxic conditions. Increased river

discharge increases stratification and decreases vertical mix-

ing, which also is generally thought to favor hypoxia (Officer

et al. 1984). However, increased river discharge also increases

the up-estuary advection of oxygen, which could favor

reduced hypoxia (Li et al. 2015). Wind-driven processes

physically alter the supply of DO to hypoxic waters through

direct vertical mixing, modulating stratification (Scully

et al. 2005), and driving axial and transverse advective

fluxes (Scully 2010b; Li et al. 2015). Wind-driven processes

also can alter the vertical and horizontal transport of

nutrients and organic matter, which can substantially alter

biological processes that impact hypoxia (Malone et al. 1986;*Correspondence: mscully@whoi.edu
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Lee et al. 2013). Much of our understanding of oxygen

dynamics comes from studies that rely on statistical corre-

lations to demonstrate the link between processes and

inter-annual variations in hypoxic volumes. Yet, these cor-

relations are confounded by the fact that oxygen dynamics

respond to a number of inter-related biological and physi-

cal processes with complex and potentially nonlinear

interactions.

Given the complex interactions between physical and

biogeochemical processes, modeling studies provide a pow-

erful tool for better understanding oxygen dynamics. Yet

given the complexity of many coupled hydrodynamic and

biogeochemical models, quantifying the relative impor-

tance of specific processes on hypoxia can be extremely

challenging—even with a model. To try and address these

complexities and isolate the role of physical processes,

Scully (2013) introduced a highly simplified approach to

modeling oxygen in Chesapeake Bay. This approach treats

the biological processes that modulate oxygen as a single

constant that is held constant in both time and space.

Despite the simplicity and obvious limitations of this

approach, it demonstrates skill in simulating the seasonal

cycle of DO in the Bay and highlights the first order con-

trol that physical processes play in modulating oxygen

dynamics. Further, by removing any variability caused by

biological processes, this approach can be used to conduct

detailed sensitivity studies that examine the role of physi-

cal processes in controlling hypoxia. Previous work using

this model has focused primarily on simulating the season-

al cycle of oxygen and did not directly addressed inter-

annual variability (Scully 2013). However, from both a sci-

entific and management perspective, understanding the

role of physical processes in contributing to inter-annual

variations in hypoxia in the Bay is of greater interest. In

this paper, the model of Scully (2013) is applied to a 30-yr

period in order to try and quantify the importance of

physical processes in modulating inter-annual variations in

hypoxic volume.

Methods

The model used in this study is nearly identical to that

used in Scully (2013). A brief description is provided here for

clarity. The hydrodynamic model is based on the Chesapeake

Fig. 1. Monthly averaged hypoxic volume for the entire model domain based on: (a)<2 mg L21 threshold, (b)<1 mg L21 threshold, and
(c)<0.2 mg L21 threshold from the 30-yr simulation. Vertical lines represent 6 1 standard deviation and gray lines represent maximum and minimum

monthly averages.

Fig. 2. Duration of the predicted occurrence of hypoxic conditions<2 mg L21 (circles), hypoxic conditions<1 mg L21 (squares), and anoxic
conditions<0.2 mg L21 (stars) from 30-yr model simulation calculated from the entire model domain.

Scully 30-yr simulation of hypoxia
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Bay Regional Ocean Modeling System (ROMS) Community

Model (ChesROMS) (Xu et al. 2012). The 150 by 100 model

domain has 20 vertical sigma levels and includes the nine

largest tributaries to the Bay, as well as the shelf region imme-

diately adjacent to the Bay mouth. Model forcing includes

river discharge derived from the United States Geological

Fig. 3. Comparison of the predicted hypoxic volume<2 mg L21 (gray stars) to the observed (black squares) volume based on individual CBP cruises
for (a) 1984–1993, (b) 1994–2003, and (c) 2004–2013. Scatter plots comparing the model prediction and observed hypoxic volumes for (d)<2 mg

L21 threshold, (e)<1 mg L21 threshold, and (f)<0.2 mg L21 threshold. Reported correlations are all significant at p<0.05.

Scully 30-yr simulation of hypoxia
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Survey (USGS) gauging stations, tidal constituents derived

from the Advanced Circulation (ADCIRC) model, observed

non-tidal water level (Duck, NC and Lewes, DE), tempera-

ture and salinity at the oceanic boundary from the World

Ocean Atlas 2001, and surface atmospheric forcing (short

wave solar radiation, long wave radiation, rainfall, surface

air humidity, pressure, temperature, and 10 m winds) from

the National Center for Environmental Prediction (NCEP)

North American Regional Reanalysis (NARR) model. Unlike

in Scully (2013), but consistent with other modeling studies

of Chesapeake Bay (Testa et al. 2014; Li et al. 2015), surface

winds from the NARR model are used instead of the

observed winds from the National Data Buoy Center (NDBC)

Thomas Point Light (TPL) station (NDBC station TPLM2).

Wind measurements at TPL began in 1986 and there are

numerous gaps in the data making their use impractical for

a 30-yr simulation.

As in Scully (2013), DO is introduced into the model as a

passive tracer. Inside the estuarine portion of the domain, a

spatially and temporally constant oxygen consumption of

1.4 3 1024 mmoleO2 m23 s21 (0.39 mmoleO2 m23 d21) is

prescribed, which is 20% smaller than the value used in

Scully (2013). This value is essentially a tuning parameter

that was selected to best match the modeled hypoxic volume

with the observations presented in Bever et al. (2013) for the

year 2004. The smaller value used in this study was needed

to produce roughly the same volume of hypoxic water when

using the NARR winds, which are weaker than the observed

TPL winds (see Fig. 13). For simplicity, the surface oxygen

concentration is set to saturation values based on the

modeled surface temperature and salinity. Dissolved oxygen

concentrations at both the oceanic and river boundaries are

fixed to saturation values and DO values are not allowed to

become negative, essentially imposing a respiration rate of

zero for anoxic conditions. For computational reasons, each

model year is run separately, initiated from the final time

step from the simulation of the previous year. The model

was spun up beginning in 1979, but our analysis focuses on

the period from 1984 to 2013 because the first Chesapeake

Bay Program (CBP) water quality cruise was conducted in

July 1984, providing a consistent data set for comparison.

A detailed skill assessment of this model is beyond the

scope of this paper. However, it is worth noting that a com-

prehensive skill assessment that compared numerous models

to CBP DO data found no statistical difference between the

skill of models that use a full biogeochemical representation

of oxygen dynamics and the simple model used here (Irby

et al. 2016). This is true for bottom DO, surface DO, and the

strength and location of the vertical DO gradient. Instead of

focusing on a detailed comparison of the model to individu-

al CBP stations, in this paper we compare simulated hypoxic

Fig. 4. Comparison of the modeled and observed mean summer (June–August) hypoxic volume for (a)<2 mg L21 threshold, (b)<1 mg L21 thresh-
old, and (c)<0.2 mg L21 threshold. Straight line represents the best fit least squares regression. Reported correlations are all significant at p<0.05.

Fig. 5. Correlation coefficient (r), between the 30-yr modeled hypoxic
volumes and those derived from the CBP data as a function of month.

Circles represent<2 mg L21 threshold, triangles represent<1 mg L21

threshold, and squares represent<0.2 mg L21 threshold. [Color figure
can be viewed at wileyonlinelibrary.com]
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volumes to those derived from the CBP data as published by

Bever et al. (2013). This data set has been extended through

the end of 2013 for this analysis. Between the months of

May and September there are typically two CBP water quali-

ty cruises per month. Because data are collected over the

entire main stem of the Chesapeake Bay and its tributaries

from multiple vessels, each “cruise” usually spans several

days. The interpolated hypoxic volumes of Bever et al.

(2013) generally represent average conditions over a 4–7 d

period. In order to compare the model output to this data

set, modeled hypoxic volumes were averaged over the period

defined by the first and last day of any given cruise. To

compare these data with the results of Bever et al. (2013),

modeled hypoxic volumes were defined based on the

thresholds<2 mg L21 and<1 mg L21, and the modeled

anoxic volume is defined based on the threshold<0.2 mg

L21. Deleterious effects to biota can begin at higher concen-

trations than those considered here (Vaquer-Sunyer and

Duarte 2012), but for consistency with previous studies

(Hagy et al. 2004; Scully 2010a; Murphy et al. 2011; Bever

et al. 2013) we utilize these thresholds.

Results

Consistent with the results of Scully (2013), results from

this 30-yr simulation demonstrate a well-defined seasonal

cycle of hypoxia in every year simulated (Fig. 1). Hypoxic

conditions are predicted to begin on average in early May,

peak in mid-July before finally mixing away in mid-

September. Both the onset and termination of hypoxia are

predicted to vary considerably, with hypoxic conditions

(<2 mg L21) beginning in early April and lasting until late

October in some years. The model predicts that anoxic con-

ditions will occur on average every summer, but anoxic con-

ditions do not always persist throughout the entire summer.

The duration of hypoxia and anoxia varies considerably in

the model results (Fig. 2). The duration of hypoxic condi-

tions (<2 mg L21) varies from a maximum of 161 d to a

minimum of 78 d and the duration of anoxic conditions

(<0.2 mg L21) varies from a maximum of 89 d to a minimum

of 3 d. These results demonstrate that physical processes have

the potential to contribute significantly to inter-annual vari-

ability in both the spatial extent and duration of hypoxia.

Figure 3 shows a comparison of the observed and mod-

eled hypoxic volume (<2 mg L21) for all cruises from 1984

to 2013. Also shown are scatter plots comparing the pre-

dicted hypoxic volumes to the observed volumes based on

all three definitions of hypoxia. Compared at this time scale,

the model demonstrates skill in predicting hypoxic volume

and explains over 80% of the variance in the time series of

hypoxic volume (<2 mg L21). Model skill is worse for anoxic

volume (r2 5 0.46). The variance at this time scale (i.e., the

individual cruise) is dominated by the seasonal cycle and

does not directly address the variability at inter-annual timeT
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scales. Figure 4 compares the observed and predicted hypox-

ic volumes for all three thresholds averaged over the months

of June, July, and August for each year. For all three thresh-

olds, the modeled hypoxic volumes are significantly

(p<0.05) correlated with the observations. The strongest cor-

relation between the model and observations is for the hyp-

oxic volume based on the 2 mg L21 threshold (r2 5 0.46)

with the weakest correlation between the modeled and

observed anoxic volumes (r2 5 0.24).

Comparing hypoxic volumes for the individual months

when hypoxia is typically observed shows that model skill

generally increases throughout the summer (Fig. 5). The

strongest correlation is for the month of August and the

weakest correlation is for the month of May. The modeled

and observed hypoxic volumes for the month of May are

not significantly correlated for any of the thresholds consid-

ered. Correlations for September are significant (p<0.05),

but values are lower than for August. Over the period 1984–

2013, a simple model with no biological variability can

explain 50% and 58% of the variance in the observed hypox-

ic volume (<2 mg L21) for the months of July and August,

respectively. We interpret the increasing correlations

throughout the summer to indicate that physical processes

play a more important role in modulating DO during the lat-

er summer months. Presumably early in the summer, hypox-

ia is driven by the respiration of spring phytoplankton-

derived organic matter, which cannot be captured by this

simple model. These results contradict the work of Murphy

et al. (2011) who found that hypoxic volumes in the early

summer exhibited a long-term trend that could be explained

by the long-term trend in stratification, while the late sum-

mer trend was consistent with decreased nitrogen loading.

The variable that explains most of the inter-annual vari-

ability in hypoxic volume (all definitions) predicted by the

numerical model is the summer (June–August) wind speed

(Table 1). The second most correlated variable is the Janu-

ary–June Susquehanna River discharge. These two variables

can explain roughly 70% of the variance in hypoxic volume

as predicted by the model. Hypoxic volumes are negatively

correlated with summer wind speed and positively correlated

with Susquehanna River discharge. The positive correlation

with river discharge is in contrast to the results of Li et al.

(2015) who found that increased river discharge decreased

integrated hypoxic volumes slightly. Correlations with the

mean summer water temperature are positive, but not signif-

icant at p<0.05. For the 30-yr time series of hypoxic

Fig. 6. Comparison of the mean summer (June–August) bottom DO concentration for (a) 1993 and (b) 1999. Thick black line represents the 2 mg
L21 contour.

Scully 30-yr simulation of hypoxia
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volumes (<1 mg L21 and 2 mg L21), statistically significant

negative correlations are found for the percent duration of

summer winds from the northeast. Both hypoxic and anoxic

volumes exhibit significant (p<0.05) positive correlations

with the duration of winds from the west and northwest and

negative correlations with duration of winds from northeast.

The positive correlations with the duration of winds from

the west is consistent with the analysis of Scully (2010a)

who found that the percent duration of summer winds from

the west was an important variable in controlling hypoxic

volumes for the time period (1950–2007).

It is worth noting that even though the model contains

no biological variability, the modeled time series of hypoxic

volumes are significantly correlated with observed nitrogen

loading. This is the result of the tight coupling between the

integrated nitrogen loading and the Susquehanna River dis-

charge and illustrates the difficulty in separating the contri-

bution of variables that have significant co-variance. In this

model, there is no biologic response to nutrient loading and

the positive correlation between river discharge and hypoxic

volume is consistent with increased stratification leading to

decreased vertical mixing. Both Scully (2013) and Li et al.

(2015) suggest that hypoxic volumes are relatively insensi-

tive to changes in river discharge because of the compensa-

tory relationship between increased up-Bay advective flux of

oxygen and decreased vertical mixing associated with

increased river discharge.

To highlight the inter-annual differences in DO distribu-

tion, we compare the predicted average summer (June–

August) DO concentration for 1993 and 1999 (Figs. 6, 7). In

1999, the mean summer wind speed was the second stron-

gest during the 30-yr period and the January–June river dis-

charge was the fourth lowest. In contrast, 1993 had the

second highest average January–June river discharge and

third weakest average summer winds. The high winds and

low river discharge in 1999 limited the bottom extent of low

DO compared to 1993. The overall length of hypoxic water

(<2 mg L21) expanded from 88 km in 1999 to 146 km in

1993. Similarly, the effective width of the hypoxic zone

(<2 mg L21) in 1993 is nearly double that of 1999 and hyp-

oxic water spreads laterally into the lower Potomac River

(PR).

Empirical orthogonal function (EOF) analysis is used to

examine the inter-annual variability of the summer DO

Fig. 7. Comparison of the mean summer (June–August) thalweg DO concentration for (a) 1993 and (b) 1999. Thick black line represents the 2 mg
L21 contour.

Scully 30-yr simulation of hypoxia
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concentration. Both the bottom DO and profiles of DO from

the deepest location in the estuarine cross-section along the

length of the Bay (e.g., the thalweg) are averaged over the

months of June through August for each year and the EOF

analysis is performed on the resulting 30-yr time series. The

first and second modes from the thalweg EOF analysis are

highly correlated with the first and second modes from the

EOF analysis of bottom DO, and represent essentially the

same modes of variability. The first and second modes from

the EOF analysis explain roughly 70% and 13% of the vari-

ance, respectively, for both bottom DO and the thalweg dis-

tribution of DO. The first mode of the bottom DO EOF is

characterized by high variance in DO concentration centered

roughly on the 8 m isobath surrounding the deep channel

(Fig. 8). This is a region where there is a strong DO gradient

and generally coincides with the location where the pycno-

cline intersects the bottom, on average. For the thalweg dis-

tribution, the mode 1 EOF has the greatest variability in the

pycnocline with greater variability in the northern portion

of the Bay near the Bay Bridge (BB) where the bathymetry

shoals (Fig. 9). The first mode is significantly correlated with

both the averaged summer (June–August) wind speed

(r 5 0.64) and the January–June Susquehanna River discharge

(r 5 20.60). Increased wind mixing generally erodes hypoxic

water and shifts the location where the pycnocline intersects

the bottom into deeper water, consistent with the positive

correlation with mode 1. Under increased river discharge,

the location where the pycnocline intersects the bottom

moves into shallower water, resulting in a negative correla-

tion between river discharge and the variability of mode 1.

This suggests that the lateral and vertical expansion of hyp-

oxic water in response to increased river discharge is more

important than the increase in the advective flux at the

southern limit of the hypoxic zone. Mode 1 is generally posi-

tive everywhere suggesting that regions of high variability

are in phase, increasing or decreasing at the same time.

In contrast, mode 2 is characterized by both positive and

negative values and represents a north-south shift in the

oxygen field where variations in bottom DO north and south

of roughly 38.58N are out of phase (Figs. 8, 9). Our inter-

pretation is that this mode represents the response to bathy-

metrically controlled convergence/divergence caused by

increased river discharge. We hypothesize that elevated river

discharge leads to strong surface convergence south of the

mouth of the PR, where the deep channel shoals from over

40 m to 15 m onto Rappahannock Shoal (RS). Strong surface

Fig. 8. The (a) first and (b) second mode EOF for summer (June–August) mean bottom DO concentration for the 30-yr simulation. First mode

explains 70% of the variance and second model explains 13% of the variance. The location of the BB, mouth of PR, and RS are denoted on the
figure.
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convergence caused by this rapid decrease in bathymetry is

intensified during high river discharge conditions and causes

significant downward advection and mixing of surface oxy-

gen (M. E. Scully, Mixing of DO in Chesapeake Bay driven

by the interaction between wind driven circulation and estu-

arine bathymetry, Journal of Geophysical Research: Oceans,

unpubl. in press.). Similarly, south of the BB where the

thalweg depth increases from less than 15 m to over 40 m,

there is strong surface divergence in the residual along-

channel flow, leading to upwelling of low-oxygen bottom

waters and decreasing oxygen concentration in the upper

layer.

The downwelling near RS and the upwelling south the BB is

enhanced by increased river discharge and causes the oxycline

Fig. 9. The (a) first and (b) second mode EOF for summer (June–August) mean thalweg DO concentration for the 30-yr simulation. First mode

explains 70% of the variance and second model explains 13% of the variance.

Fig. 10. Comparison of the location of the thalweg 2 mg L21 mean summer DO contour for 1984 (years with lowest mode #2 EOF score) and 1991

(year with highest mode #2 EOF score).
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to tilt up toward the north. This is illustrated by comparing

the location of the 2 mg L21 contour for 1984 (year with low-

est EOF #2 score) with 1999 (year with highest EOF #2 score)

(Fig. 10). The second mode is negatively correlated with the

June–August Susquehanna River discharge (r 5 20.71) sugges-

ting that when summer river discharge is high, the region of

low oxygen water shifts northward. This pattern of variability

and the negative correlation with river discharge is opposite

to what is expected if increased river discharge resulted in a

simple down-estuary displacement of the low DO region. Li

et al. (2015) found that increased river discharge resulted in

increased up-Bay oxygen flux at the southern end of the hyp-

oxic zone, which is consistent with the northward displace-

ment of the 2 mg L21 contour in response to increased river

discharge, but does not explain the northward and upward

shift near the BB.

In the southern portion of the Bay, the model predicts

that the horizontal bottom DO gradient is relatively weak in

the along channel direction (e.g., Figs. 6, 7). As a result, even

relatively small changes in the bottom DO concentration in

this region can result in large shifts in the location of the

southern boundary of hypoxic water (<2 mg L21). This area

does not appear as a region of high DO variance in either

the bottom or thalweg mode #1 EOF (Figs. 8a, 9a). However

if we quantify the variance in the location of the 2 mg L21

contour, the biggest changes from summer-to-summer are in

this region between 37.758N and 38.258N (Fig. 11). In the

middle section of the Bay, the model predicts that the maxi-

mum difference in the vertical position of the 2 mg L21 con-

tour is only about 3 m from summer-to-summer (Fig. 12).

Similarly, the modeled width of the hypoxic zone in the

middle of the Bay exhibits very little variability from year-to-

year, and nearly all of the variability in the size of the

hypoxic zone is caused by changes in its length. Unlike the

location of the 2 mg L21 contour, which varies mostly

around the periphery of the deep channel, the location of

the 0.2 mg L21 contour is limited mostly to the deep bottom

waters between 38.38N and 38.98N. In this region, the aver-

age summer oxygen concentration is nearly always less than

2 mg L21 and it is the core of the hypoxic zone predicted by

the model.

The model results indicate that the mean summer wind

speed is the primary physical variable that contributes to

this variability. Previous studies that have examined long-

term trends in observed hypoxic volume in Chesapeake Bay

have not noted a significant negative correlation between

summer wind speed and hypoxic volume (Scully 2010a;

Murphy et al. 2011; Lee et al. 2013; Zhou et al. 2014). These

Fig. 11. Standard deviation of the location of the summer (June–August). (a) 2 mg L21 bottom DO contour; (b) 1 mg L21 bottom DO contour; (c)
0.2 mg L21 bottom DO contour.
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studies have used the winds measured at the Patuxent Naval

Air Station (PNAS) and not the winds from TPL, which are

measured over water. We perform a correlation analysis on

the observed time series of summer hypoxic volumes derived

from the CBP data similar to that performed on the model

output, but using the observed water temperature and winds

from TPL (Table 2). Data were not available at TPL until

1986, so the analysis is limited to 28 yr (1986–2013). Consis-

tent with the results from the numerical simulations, the

observed hypoxic and anoxic volumes are significantly corre-

lated with the observed January–June Susquehanna River dis-

charge. Unlike previous studies, we find that the observed

hypoxic volumes (<1 and <2 mg L21) are significantly corre-

lated with the observed summer wind speed. A simple multi-

ple regression that includes mean summer wind speed and

January–June Susquehanna River discharge can explain

roughly 60% of the variance in the observed time series of

hypoxic and anoxic volumes, which is similar to the vari-

ance explained in the model. We note that hypoxic volumes

are not significantly correlated with summer wind speed

measured at PNAS, consistent with previous studies.

Correlations between nitrogen loading and hypoxic vol-

umes (<2 mg L21) are similar between the model and obser-

vations despite the fact that the model has no response to

this loading. This suggests that much of the variance in the

observed hypoxic volumes could simply be explained by the

physical response to increased stratification driven by Sus-

quehanna flow. In contrast, the correlation between the

observed anoxic volumes and nitrogen loading is much

stronger in the observations than in the model suggesting

that the core of anoxic water is primarily caused by the

response to nutrient loading. In fact, the summer anoxic vol-

umes from 1984 to 2013 are more strongly correlated with

the integrated January–June Susquehanna River nitrogen

load than either the numerical model results, or any other

variable. Unlike the analysis of the model results, the river

discharge generally explains more of the inter-annual vari-

ability in the observed hypoxic volumes than the summer

wind speed. While there are a number of potential explana-

tions for this, we suggest that the greater correlation

between the observed hypoxic volumes and river discharge

reflects the fact that increased river discharge also brings

Fig. 12. Standard deviation of the location of the summer (June–August). (a) 2 mg L21 thalweg DO contour; (b) 1 mg L21 thalweg DO contour; (c)

0.2 mg L21 thalweg DO contour.
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increased nutrient loads. The stronger correlation between

the observed hypoxic volumes and river discharge is most

likely because there is both a physical and biological

response to this forcing.

Hypoxic and anoxic volumes are not significantly corre-

lated with the observed mean summer water temperature at

TPL (Table 2), generally consistent with the results from the

30-yr model simulation. In contrast to the modeling results

of Scully (2013), which suggest that the seasonal variation of

temperature plays an important role in the seasonal cycle of

hypoxia, both the model and observations suggest that

inter-annual variations in water temperature do contribute

significantly to inter-annual variations in hypoxia at the

time scales considered here. At longer time scales, it has

been suggested that increasing water temperature could

enhance hypoxic volume (Kemp et al. 2009). Kaushal et al.

(2010) show that the observed annual water temperatures at

Solomons, MD have increased over the period from 1938 to

2006, with a relatively rapid increase around 1985. This

increase in 1985 is not apparent in the data from TPL.

Correlations between the observed hypoxic volumes and

observed percent duration of winds from the west and

northwest are not significant, as they are in the model.

There are some important differences between the modeled

and observed winds. The overall magnitude of the observed

summer winds at TPL is over 45% stronger than in the

NARR model for the grid nearest TPL, on average. Addition-

ally, the observations suggest that summer winds from the

south are more common and stronger relative to other direc-

tions, than is captured by the model (Fig. 13). The observed

hypoxic volumes are not significantly correlated with mean

average summer wind speed from the model (NARR), sugges-

ting that deficiencies in the modeled winds could degrade

the prediction of hypoxic volume at inter-annual time

scales.

Clearly, the lack of any biological variability is a major

shortcoming of this simple model. However, deficiencies in

the model’s ability to accurately capture the hydrodynamics

also adversely impact its ability to model oxygen. In an

attempt to quantify the model’s deficiencies, the residuals

are examined. Here, the residuals are defined as the differ-

ence between the observed summer hypoxic volumes and

the variability in the numerical model that is statistically

correlated with the observations. A simple least squares fit

between the observed summer hypoxic volumes and the

numerical model results is done to determine and remove

the variability in the observations that is correlated with the

numerical results. The correlation between the residuals and

various forcing parameters is given in Table 3. For forcing

parameters that are not included in the model (like nitrogen

load), or are based directly on observations (like river dis-

charge), correlations are performed between the residuals

and the observed variable. For the other variables (water

temperature and wind speed and direction), the residuals areT
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correlated with the difference between the observed and the

modeled forcing. Because the observed wind speed and water

temperature are measured at TPL, we restrict this analysis to

the period when data from TPL were available (1986–2013).

For hypoxic volume<2 mg L21, the residuals are not sig-

nificantly correlated with the observed January–June nitro-

gen loading, suggesting that the lack of biological response

to nutrient loading is not the primary reason the model and

data disagree. In contrast, for anoxic volume there is a

strong positive correlation between the residuals and nitro-

gen loading, demonstrating that much of the variability in

the observations that is not captured by the model is due to

biological processes. The residuals for both definitions of

hypoxic volume are more strongly correlated with differ-

ences between the observed and modeled wind forcing than

for nitrogen loading. One interpretation of this result is that

the spatial and temporal resolution of the NARR modeled

winds do not adequately capture the details of the wind forc-

ing over Chesapeake Bay and that more accurate wind forc-

ing would improve model prediction of hypoxic volume.

Given the dominant role that the summer wind speed

plays in controlling hypoxia predicted by the model, it is

worth briefly discussing the consistency between various

observations of wind measured around Chesapeake Bay. Pre-

vious studies have found a dependence of hypoxic volume

on wind direction, but have not found a significant correla-

tion between summer hypoxic volume and mean summer

wind speed (Scully 2010a; Murphy et al. 2011; Lee et al.

2013; Zhou et al. 2014). All of these studies have relied on

the winds from PNAS, which are not measured over water.

In addition to TPL (1986–present), wind speed measurements

over water have been made at the Cove Point LNG Pier

(NDBC station COVM2) since 2007, York River Light (YRL)

(NDBC station YKRV2) since 2006, and at both the Rappa-

hannock Light (RPL) (NDBC station RPLV2) and Chesapeake

Bay Bridge Tunnel (CBBT) (NDBC station CBBV2) since

2005. While these records are much shorter than those from

PNAS and TPL, it is instructive to compare the mean summer

winds measured at these stations. As the correlations

in Table 4 demonstrate, there is generally strong correspon-

dence between the winds at TPL and the other stations that

measure wind speed over water. In contrast, the correlations

between summer wind speed at PNAS and all the stations

that measure wind speed over water are either low, or in a

number of cases, negative. In all cases the observed winds

over water are negatively correlated with the observed hyp-

oxic volumes, while the mean summer wind speed measured

at PNAS exhibits essentially no correlation to the observed

volumes. While interpreting the statistics of such short

records must be done with caution, these data seem to indi-

cate that the winds at PNAS do not capture the inter-annual

variations in summer wind speed that are observed at the

stations that measure wind speed over water.

All of the stations that measure wind speed over water

demonstrate that the dominant summer wind direction is

from south or southwest. Similarly, the dominant summer

wind direction measured at PNAS is from the south (Fig. 13).

At most of the stations that measure wind speed over water,

the strongest winds during the summer are also from either

the south or southwest. In contrast, at PNAS the strongest

winds during the summer are from the north and northwest.

At TPL, summer winds from the south are �25% stronger

than the other wind directions. At PNAS, summer winds

from the south are �5% weaker than the other directions.

These results call into question the reliability of the winds

measured at PNAS.

Discussion

The model used here assumes that the biological utiliza-

tion of oxygen is constant in time and space and includes

no biological production of oxygen. In Chesapeake Bay, pri-

mary production and respiration have clear temporal and

Fig. 13. Comparison of the (a) percent duration of summer (June–August) winds and (b) strength of summer wind as a function of wind direction
for TPL, PNAS, and the NCEP NARR model. All winds have been adjusted to 10 m assuming neutral stability.
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spatial variability (e.g., Smith and Kemp 2014) and DO con-

centration in the euphotic zone often exceeds 100% satura-

tion. The model used in this study does not account for any

of these processes. Yet, a detailed skill assessment that com-

pared numerous models to CBP DO data found no statistical

difference in skill between models that used a full biogeo-

chemical representation of oxygen dynamics and the simple

model used here (Irby et al. 2016). This does not imply that

these biogeochemical processes are not important, but that

accurately modeling these complex processes is extremely

difficult. It also highlights the important role that physical

processes play in controlling the temporal and spatial distri-

bution of oxygen in Chesapeake Bay. The model used here is

not intended to accurately represent the biogeochemistry

that drives hypoxia. Rather, the model is designed to try and

isolate the contributions by physical processes.

While that is the intent, it is important to point out that

there is an inherent coupling between biological and physi-

cal processes that may not be accurately accounted for in

this model. Biogeochemical processes contribute to the evo-

lution of oxygen gradients, which in turn will influence how

both vertical mixing and horizontal advection supply oxy-

gen to hypoxic regions. This is clearly illustrated by the

results of Li et al. (2015) who demonstrate that seasonal var-

iations in water column respiration rate significantly alter

the horizontal advection of DO into the southern hypoxic

zone of Chesapeake Bay. Although a complete evaluation of

these complex interactions is beyond the scope of this paper,

it is instructive to examine the sensitivity of the model

results to the prescribed oxygen utilization rate. To that end,

the 30-yr simulation was run using a rate of 2.1 3 1024

mmoleO2 m23 s21, a 50% increase over the base model run.

Increasing the biological consumption of oxygen leads to

substantial increases in the observed hypoxic volumes dur-

ing the summer months (Fig. 14). The simulations with the

higher utilization rate still predict a clear seasonal cycle with

hypoxia largely absent during the winter months, highlight-

ing the importance of physical processes on the seasonal

cycle. The duration of hypoxia predicted by the model

increases, with the months of April and October experienc-

ing hypoxia more consistently than the simulations with the

lower utilization rate.

Increases in hypoxic volume that are the result of the

increased biological oxygen utilization are largely the result

of the seaward expansion of the summer hypoxic zone (Fig.

15). By comparison, both the vertical and lateral changes in

the hypoxic region are relatively modest (Fig. 16). The sea-

ward expansion of the hypoxic zone in response to increased

biological oxygen utilization is consistent with the model

results of Testa et al. (2014). Their results suggest that higher

nitrogen loads lead to increases in water column production

and respiration in the seaward regions of the Bay during

summer months, which led to the southward expansion of

hypoxia. Interestingly, this is also the region where theT
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inter-annual variability due to physical processes is greatest

(e.g., Figs. 11, 12). In both the vertical and across Bay direc-

tions, there are very strong gradients in the vertical supply

of oxygen via turbulent mixing that are associated with the

location of the pycnocline. As a result, even relatively large

changes in biological oxygen utilization do not result in

large changes in the vertical or lateral location of hypoxic

water during the summer. In contrast, the southern limit of

the hypoxic zone is characterized by relatively weak horizon-

tal gradients in oxygen (e.g., Fig. 7), which presumably are

associated with weak gradients in the physical supply. Thus,

small changes in either the physical supply of oxygen or its

biological utilization will result in large horizontal excur-

sions of the location of the hypoxic zone.

Despite the fact that increasing the oxygen utilization

rate changes the physical distribution of DO (e.g., Figs. 15,

16), the predicted inter-annual variability in hypoxic volume

remains virtually unchanged when the biological utilization

in the model is increased. The correlation between the 30-yr

time series of summer hypoxic volume<2 mg L21 for the

simulations with high and low biological utilization is

extremely high (r2 5 0.98) (Fig. 14). The other thresholds

have similarly high correlations. While this does not directly

address the role of spatial variations in biological processes,

it does suggest that the inter-annual variability driven by

physical processes is not sensitive to the spatial distribution

of DO.

The conclusion of this paper is not that biological

variability is unimportant. The sensitivity to the imposed

oxygen utilization rate clearly highlights that the biogeo-

chemical response to nutrient loading is the underlying pro-

cess that results in hypoxia. Inter-annual variations in this

Table 4. Correlation coefficient (r) between mean summer (June–August) wind speed measured at various stations around Chesa-
peake Bay and the NARR model. Stations where wind speed is measured over water include Cove Point LNG pier (COV), YRL, RPL,
CBBT, and TPL. Winds at PNAS are not measured over water. Data from the NARR model are taken from the grid location nearest
TPL. The duration of available measurements is indicated for each station and correlations are based on available data. Bold font is
used to highlight negative correlations.

COV

(2007–2013)

YRL

(2006–2013)

RPL

(2005–2013)

CBBT

(2007–2013)

TPL

(1986–2013)

NARR

(1984–2013)

0.31 20.07 20.28 20.24 0.24 0.51 PNAS (1984–2013)

0.84 0.67 0.68 0.63 0.85 COV (2007–2013)

0.86 0.80 0.81 0.81 YRL (2006–2013)

0.69 0.81 0.68 RPL (2005–2013)

0.55 0.44 CBBT (2007–2013)

0.59 TPL (1986–2013)

Fig. 14. (a) Predicted monthly averaged hypoxic volume (< 2 mg L21) for the 30-yr simulation where the oxygen utilization rate is increased to 2.1

3 1024 mmoleO2 m23 s21. Vertical lines represent 6 1 standard deviation and gray lines represent maximum and minimum monthly averages. (b)
Comparison of the summer (June–August) hypoxic volume (< 2 mg L21) for the base simulation where the oxygen utilization rate is 1.4 3 1024

mmoleO2 m23 s21 (x-axis) with the simulation where the oxygen utilization rate is increased to 2.1 3 1024 mmoleO2 m23 s21 (y-axis). The best fit

linear regression is shown by the fitted line. Reported correlation is significant at p<0.01.
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rate will clearly contribute to inter-annual variations in hyp-

oxic volume. The results from the correlation analysis

presented above clearly demonstrate that inter-annual varia-

tions in the observed anoxic volumes are strongly related to

nutrient loading. However, the results presented above also

demonstrate that observed hypoxic volumes are statistically

related to both nutrient loads and physical forcing, and a

simple model with no biological variability captures over

half the observed variance in hypoxic volume for the

months of July and August for the period 1984–2013. From a

management perspective, quantifying the role of physical

processes is important to a better understanding of the rela-

tionship between hypoxic volume and nutrient loading.

Physical processes are not the only reason for the decoupling

between nutrient loading and hypoxia. Kemp et al. (2009)

conclude that a number of both physical and ecological pro-

cesses can shift the relationship between hypoxia and nutri-

ent loading, and that hypoxia in large open systems like

Chesapeake Bay responds to changes in nutrient loading in

nonlinear ways.

Historical data document that the observed hypoxic vol-

umes normalized by spring nitrogen loading increased signif-

icantly in the early 1980s (e.g., Hagy et al. 2004). This shift

could be the result of fundamental changes to the ecosys-

tem, long-term changes in the atmospheric forcing, or both

(Kemp et al. 2009). Atmospheric forcing from the NARR

model only is available beginning in 1979. Without accurate

atmospheric forcing prior to 1979, it is not possible to use

this model to assess the role that changes in physical forcing

may have played in contributing to this increase. Scully

(2010a) documented that decadal-scale oscillations in the

strength of the summer Bermuda high pressure system

favored greater incidence of summer winds from the west

over Chesapeake Bay beginning around 1980. It was hypoth-

esized that this shift contributed to the increase in hypoxic

volume that occurred in the early 1980s. The model results

presented above support the occurrence of greater hypoxic

volume in association with increased duration of winds from

the west. However, both wind speed and river discharge

explain more of the modeled variability than differences in

wind direction. Thus, it is unlikely that this model would

capture the large increases in hypoxic volume that occurred

around 1980, but longer simulations with accurate atmo-

spheric forcing could better address this hypothesis.

Conclusions

The results presented above suggest that a relatively sim-

ple model with no biological variability can capture roughly

half of the observed variability in hypoxic volume for the

months of July and August over the period 1984–2013.

Model skill increases during the summer, peaking in August

suggesting physical processes play a more important role in

modulating hypoxia later in the summer. Model skill is

much better for hypoxic volumes than for anoxic volumes.

In fact, a simple regression based on the integrated January–

June Susquehanna River nitrogen load can explain more of

the variability in anoxic volume than the model presented

here. Our interpretation of these results is that physical forc-

ing plays a much more important role in controlling hypox-

ic volumes than anoxic volumes in Chesapeake Bay. Our

results support the notion that the biologic response to the

delivery of nutrients via river discharge in the spring leads to

the development of anoxic water in summer. However, phys-

ical processes result in mixing at the edges of this anoxic

zone and appear to play an important role in controlling the

extent of hypoxic water. This mixing is primarily done by

the wind. Previous studies have failed to document the

importance of summer wind speed because they have relied

on winds measured at PNAS, which does not capture the

observed inter-annual variations in wind speed that are

Fig. 15. Comparison of thalweg location of the mean summer (June–August) 2 mg L21 oxygen contour for the base model run with a oxygen utili-

zation rate of 1.4 3 1024 mmoleO2 m23 s21 (thin black line) with the 30-yr simulation where the oxygen utilization rate was increased to 2.1 3 1024

mmoleO2 m23 s21 (thick gray line).
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observed by stations that directly measure wind over the

waters of Chesapeake Bay.
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