7 research outputs found

    Corticotropin-releasing factor receptor 1 activation during exposure to novelty stress protects against alzheimer's disease-like cognitive decline in AβPP/PS1 Mice

    Get PDF
    A lifestyle rich in physical and mental activities protects against Alzheimer's disease (AD) but the underlying mechanisms are unclear. We have proposed that this is mediated by a stress response and have shown that repeated exposure to novelty stress, which induces physical and exploratory activities, delays the progression of AD-like pathology in the TASTPM mouse model. Here, we aimed to establish the role played by corticotrophin-releasing factor receptor 1 (CRFR1), a major component of the stress axis, in TASTPM's behavioral and neuroendocrine responses to novelty and related protective effects. We show that the stress response of TASTPM mice is altered with reduced CRFR1-mediated neuroendocrine and behavioral responses to novelty and a distinct profile of behavioral responses. Repeated novelty-induced CRFR1 activation, however, mediated the improved contextual fear memory and extinction performance of TASTPM mice and increased hippocampal and fronto-cortical levels of synaptophysin, a marker of synaptic density, and fronto-cortical levels of the post-synaptic marker PSD95. The N-methyl-D-aspartate receptor (NMDAR) is the major receptor for synaptic plasticity underlying learning and memory. Although novelty-induced NMDAR activation contributed to enhancement of fear memory and synaptophysin levels, antagonism of CRFR1 and NMDAR prevented the novelty-induced increase in hippocampal synaptophysin levels but reversed the other effects of CRFR1 inactivation, i.e., the enhancement of contextual fear extinction and fronto-cortical synaptophysin and PSD95 levels. These findings suggest a novel mechanism whereby a stimulating environment can delay AD symptoms through CRFR1 activation, facilitating NMDAR-mediated synaptic plasticity and synaptogenesis in a region-dependent manner, either directly, or indirectly, by modulating PSD95. © 2013 - IOS Press and the authors. All rights reserved

    CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations

    Get PDF
    CBS domains are defined as sequence motifs that occur in several different proteins in all kingdoms of life. Although thought to be regulatory, their exact functions have been unknown. However, their importance was underlined by findings that mutations in conserved residues within them cause a variety of human hereditary diseases, including (with the gene mutated in parentheses): Wolff-Parkinson-White syndrome (γ2 subunit of AMP-activated protein kinase); retinitis pigmentosa (IMP dehydrogenase-1); congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members); and homocystinuria (cystathionine β-synthase). AMP-activated protein kinase is a sensor of cellular energy status that is activated by AMP and inhibited by ATP, but the location of the regulatory nucleotide-binding sites (which are prime targets for drugs to treat obesity and diabetes) was not characterized. We now show that tandem pairs of CBS domains from AMP-activated protein kinase, IMP dehydrogenase-2, the chloride channel CLC2, and cystathionine β-synthase bind AMP, ATP, or S-adenosyl methionine,while mutations that cause hereditary diseases impair this binding. This shows that tandem pairs of CBS domains act, in most cases, as sensors of cellular energy status and, as such, represent a newly identified class of binding domain for adenosine derivatives

    Glucocorticoid receptor alters isovolumetric contraction and restrains cardiac fibrosis

    Get PDF
    Corticosteroids directly affect the heart and vasculature and are implicated in the pathogenesis of heart failure. Attention is focussed upon the role of the mineralocorticoid receptor (MR) in mediating pro-fibrotic and other adverse effects of corticosteroids upon the heart. In contrast, the role of the glucocorticoid receptor (GR) in the heart and vasculature is less well understood. We addressed this in mice with cardiomyocyte and vascular smooth muscle deletion of GR (SMGRKO mice). Survival of SMGRKO mice to weaning was reduced compared with that of littermate controls. Doppler measurements of blood flow across the mitral valve showed an elongated isovolumetric contraction time in surviving adult SMGRKO mice, indicating impairment of the initial left ventricular contractile phase. Although heart weight was elevated in both genders, only male SMGRKO mice showed evidence of pathological cardiomyocyte hypertrophy, associated with increased myosin heavy chain-β expression. Left ventricular fibrosis, evident in both genders, was associated with elevated levels of mRNA encoding MR as well as proteins involved in cardiac remodelling and fibrosis. However, MR antagonism with spironolactone from birth only modestly attenuated the increase in pro-fibrotic gene expression in SMGRKO mice, suggesting that elevated MR signalling is not the primary driver of cardiac fibrosis in SMGRKO mice, and cardiac fibrosis can be dissociated from MR activation. Thus, GR contributes to systolic function and restrains normal cardiac growth, the latter through gender-specific mechanisms. Our findings suggest the GR:MR balance is critical in corticosteroid signalling in specific cardiac cell types

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Repeated novel cage exposure-induced improvement of early Alzheimer's-like cognitive and amyloid changes in TASTPM mice is unrelated to changes in brain endocannabinoids levels

    No full text
    Environmental factors (e.g. stress, exercise, enrichment) are thought to play a role in the development of Alzheimer's disease later in life. We investigated the influence of repeated novel cage exposure on the development of early Alzheimer's-like pathology in adult (4 months old) double transgenic mice over-expressing the amyloid precursor protein and presenilin-1 genes (TASTPM mouse line). The procedure involves the repeated placement of the animal into a novel clean cage, a manipulation which induces a stress response and exploratory activity and, as such, can also be seen as a mild form of enrichment. Before and after exposure to the novel cage procedure, separate groups of mice were evaluated for locomotor performance and short-term contextual memory in the fear-conditioning test. Repeated novel cage exposure prevented the onset of a short-term memory deficit that was apparent in 5.5- but not 4-month-old TASTPM mice, without reversing the deficit in extinction already evident at 4 months of age. Brain regional levels of soluble and insoluble amyloid and of endocannabinoids were quantified. Novel cage exposure attenuated soluble and insoluble amyloid accumulation in the hippocampus and frontal cortex, without affecting the age-related increases in regional brain endocannabinoids levels. These beneficial effects are likely to be the consequence of the increase in physical and exploratory activity induced by novel cage exposure and suggest that the impact of environmental factors on Alzheimer's-like changes may be dependent on the degree of activation of stress pathways
    corecore