112 research outputs found

    Al based alloys containing amorphous and nanostructured phases

    Get PDF
    Nanostructured or partially amorphous Al-based alloys are attractive candidates for advanced high-strength lightweight materials. The strength of such materials is often 2 - 3 times higher than the strength of commercial crystalline alloys. Further property improvements are achievable by designing multi-phase composite materials with optimized length scale and intrinsic properties of the constituent phases. Such alloys can be prepared by quenching from the melt or by powder metallurgy using mechanical attrition techniques. This paper focuses on mechanically attrited Al-based powders containing amorphous or nano-crystalline phases, Al-based MMCs containing metallic glass reinforcement and on their consolidation into bulk specimens. Selected examples of mechanical deformation behavior are presented, revealing that the properties can be tuned within a wide range of strength and ductility as a function of size and volume fraction of the different phases

    Reciprocating sliding wear behavior of high-strength nanocrystalline Al84Ni7Gd6Co3 alloys

    Get PDF
    Nanocrystalline Al-Ni-Gd-Co alloys with exceptionally high hardness have been recently developed from amorphous precursors. In the present work, the reciprocating sliding wear in the gross slip regime of these novel nanocrystalline Al-based alloys has been investigated under small amplitude oscillatory sliding motion using a martensitic chrome steel as the counter material. When compared to pure Al or Al-12Si alloy, these nanocrystalline alloys exhibit excellent wear resistance and a lower coefficient of friction when sliding against steel. The enhanced wear resistance of the novel nanocrystaline Al alloys is related to their ultra-high hardness and the hybrid nanostructure that mainly consists of nanometric intermetallic phases embedded in a nanocrystalline fcc-Al matrix. Three body abrasive conditions were created at the initial stages of the wear tests due to the formation of micro- and nano-particulate debris from the worn surface of the Al alloys; the debris was compacted under the subsequent sliding cycles forming layers that are protective to the extensive wear of the Al alloys

    Ductile bulk metallic glass by controlling structural heterogeneities

    Get PDF
    A prerequisite to utilize the full potential of structural heterogeneities for improving the room-temperature plastic deformation of bulk metallic glasses (BMGs) is to understand their interaction with the mechanism of shear band formation and propagation. This task requires the ability to artificially create heterogeneous microstructures with controlled morphology and orientation. Here, we analyze the effect of the designed heterogeneities generated by imprinting on the tensile mechanical behavior of the ZrTiCuNiAl BMG by using experimental and computational methods. The imprinted material is elastically heterogeneous and displays anisotropic mechanical properties: strength and ductility increase with increasing the loading angle between imprints and tensile direction. This behavior occurs through shear band branching and their progressive rotation. Molecular dynamics and finite element simulations indicate that shear band branching and rotation originates at the interface between the heterogeneities, where the characteristic atomistic mechanism responsible for shear banding in a homogeneous glass is perturbed

    Novel microstructural characteristics and properties of spray formed Al-RE-TM based alloys

    Get PDF
    Recent studies on the synthesis of bulk Al-RE (Rare Earth)-TM (Transition Metal) based alloys, from melt spun ribbons and gas atomized powders, have shown that a partially amorphous or nano-crystalline structures lead to a high specific strength. In the present study, therefore, spray atomization and deposition process has been used to produce plates of Al85Y8Ni5Co2 (deposit D1) and Al83Y5La5Ni5Co2 (deposit D2) based alloys so as to synthesize bulk deposit of nano-crystalline and/or partial amorphous matrix composite in a single step. The rapid solidification and high undercooling of droplets during atomization and a chilling effect on undercooled liquid upon deposition are expected to give rise to the above microstructural features. The microstructural features of deposits as well as overspray powders were studied using optical, scanning and transmission electron microscope. The alloys invariably showed a large fraction of nano-crystalline and amorphous structures, characterized by featureless regions at optical resolution, along with distribution of primary equilibrium phases. The differential scanning calorimetric (DSC) analysis of the deposits showed all the crystallization peaks as is observed during crystallization of fully amorphous melt spun ribbons of respective compositions. A glass transition phenomenon is observed in Al-Y-Ni-Co based deposit. The transmission electron microscopy of deposit D1 showed the presence of 50-100 nm size fcc-Al precipitates in an amorphous matrix decorated with 5-20 nm fcc-Al crystallites. The annealing treatment of deposits at different temperatures, determined from the crystallization peaks of the deposit, showed precipitation of nanoscale fcc-Al and intermetallic phases giving rise to a remarkable increase in hardness. The bulk hardness of the deposits D1 and D2 was 391 and 427 HV, respectively. Whereas, the heat treated deposits showed a bulk hardness value of 476 HV for deposit D1 at 298 oC and 582 HV for deposit D2 at 380 oC. An attempt has been made to bring out the possible mechanism of microstructural evolution during spray deposition of these alloys, and the effect of microstructural features on the mechanical properties has been discussed

    Inverse Hall Petch Like Mechanical Behaviour in Nanophase Al-Cu-Fe Quasicrystals: A New Phenomenon

    Get PDF
    The structural and mechanical stability of quasicrystals are important issues due to their potential for possible applications at high temperatures and stresses. The aim of the present work is, therefore, to review the earlier works on conventional crystalline and quasicrystalline materials and also to report the results and the analysis on the Hall Petch and inverse Hall Petch like behavior of nanoquasicrystalline Al62.5Cu25Fe12.5 alloys. It was observed that, at large grain sizes, the hardness increases with decreasing grain size, exhibiting the conventional Hall Petch relationship, whereas for smaller grains, inverse Hall Petch behavior was identified. The inverse Hall Fetch behavior in the nanoquasicrystalline phase could be attributed to thermally activated shearing of the grain boundaries, leading to grain boundary sliding in nanostructures of quasicrystalline grains. These results were analyzed based on the dislocation pile-up model as well as the grain boundary shearing models applicable to nanomaterials
    corecore