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Abstract 

Nanocrystalline Al-Ni-Gd-Co alloys with exceptionally high hardness have been recently 

developed from amorphous precursors. In the present work, the reciprocating sliding wear in the 

gross slip regime of these novel nanocrystalline Al-based alloys has been investigated under 

small amplitude oscillatory sliding motion using a martensitic chrome steel as the counter 

material. When compared to pure Al or Al-12Si alloy, these nanocrystalline alloys exhibit 

excellent wear resistance and a lower coefficient of friction when sliding against steel. The 
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enhanced wear resistance of the novel nanocrystaline Al alloys is related to their ultra-high 

hardness and the hybrid nanostructure that mainly consists of nanometric intermetallic phases 

embedded in a nanocrystalline fcc-Al matrix. Three body abrasive conditions were created at the 

initial stages of the wear tests due to the formation of micro- and nano-particulate debris from the 

worn surface of the Al alloys; the debris was compacted under the subsequent sliding cycles 

forming layers that are protective to the extensive wear of the Al alloys.  

 

Keywords: Wear; Nanocrystalline alloys; Al alloys; Reciprocating sliding wear; Fretting wear; 

Tribological behavior 

 

1. Introduction 

Nanocrystalline (NC) and ultrafine grained (UFG) Al-based alloys have been the subject of 

intensive research over the last decades owing to their high room temperature strength combined 

with low density [1, 2]. A variety of high-strength Al-based alloys have been produced as large-

scale bulk samples by consolidation and crystallization of glassy powders; although high tensile 

strength has been obtained in a few cases, most often consolidated Al alloys only show high 

compressive strength [2]. Compared to conventional coarse-grained Al alloys, the mechanical 

strength of which usually does not exceed 700 MPa, nanocrystalline Al-based alloys obtained 

from metallic glass precursors poses mechanical strengths that often reach values as high as 1 

GPa [3, 4]. Recently, a novel Al84Ni7Gd6Co3 alloy with hybrid nanostructure and super-high 

mechanical strength up to ~1.8 GPa in compression has been developed [5], which is the highest 

strength ever reported for bulk Al-based alloys. The combination of exceptionally high strength 

and low density (~3.75 g cm
-3

) leads to excellent specific engineering properties, such as specific 

strength of 496 kNm kg
-1

 and specific Young’s modulus of 32 MNm kg
-1

. The discovery of this 
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super-high strength Al84Ni7Gd6Co3 alloy is highly promising for the development of a new 

generation of high-strength Al alloys for advanced structural applications.  

Despite the high potential of nanocrystalline Al-based alloys for engineering applications, 

research has mainly focused on processing, microstructural and mechanical properties 

investigations [6-11], whereas friction and wear behavior have attracted negligible attention so 

far. However, for many engineering applications (including in automotive applications like 

pistons and cylinder heads) wear accounts for more than 50% of materials losses in service [12-

14] and thus the exploration of the tribological properties and wear resistance of the novel 

nanocrystalline Al alloys is of critical importance.   

The wear behavior of many engineering components is often determined by the nature and 

micro-structure of surface films and coatings deposited by various methods, including 

electrodeposition, spray and sputtering techniques [15-18]. Among the aluminum based alloys, 

aluminum-silicon alloys exhibit good resistance against the fretting cracking [19-21]. The wear 

resistance of nanostructured materials (either in coatings or bulk form) is usually superior to that 

of their coarser-structured counterparts, which can be mainly attributed to their higher hardness 

following the well-known Hall-Petch relation down to average grain sizes of about 10 nm. For 

nanostructured materials with grain sizes below a critical value that is often of the order of 10 

nm, hardness decreases as the decrease of the grain size, entering the so called “inverse Hall-

Petch rregime” [1, 18, 22-23]. High wear resistance has been shown for the case of Al-based 

nanostructured alloys produced by rapid quenching techniques in the form of thin foils and 

ribbons [24]. However, the tribological properties of bulk nanostructured Al alloys have not been 

adequately addressed. In this work, the wear behavior of the super-high strength bulk 

Al84Ni7Gd6Co3 alloy is studied under small amplitude oscillatory relative motion against a 
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martensitic chrome steel counter-face using a fretting wear apparatus. The friction coefficient, 

wear resistance and wear mechanisms have been investigated and compared with the behavior of 

pure Al and Al-Si under similar conditions.   

 

2. Experimental methods 

Al84Ni7Gd6Co3 (at.%) bulk cylinders were produced by hot pressing of gas-atomized 

powders; two processing routes were examined in the present study: a) alloys produced by hot 

pressing of gas-atomized (as-atomized) powders (HP0) and b) alloys produced by hot pressing of 

gas-atomized and ball-milled for 100 h powders (HP100). Approximately 3.5 g of powder was 

first placed in a die of 10 mm diameter and hot pressed in a chamber under vacuum using the 

following parameters: pressure of 640 MPa, temperature of 773 K and dwell time of 3 min. 

Cylindrical specimens with 10 mm diameter and 15 mm length were used for the reciprocating 

sliding wear experiments. Three independent trials were conducted for each condition. For 

comparison, pure Al specimens were produced by hot–pressing using the same parameters. 

Furthermore, the wear behavior of the nanocrystalline Al alloys was compared with that of a cast 

Al-12Si (wt%) alloy, previously reported to exhibit good wear resistance due to its eutectic 

microstructure [25-27]. The cylindrical specimens were polished using SiC paper from 400 down 

to 4000 grit and subsequently polished using 3 µm and 0.25 µm diamond suspensions. 

Reciprocating sliding wear experiments were performed using an OPTIMOL SRV device 

(Munich, Bavaria, Germany) under unidirectional sliding conditions according to the ASTM-

D5707-97 standard. The samples were tested against a steel ball (G-Cr 15) with a diameter of 10 

mm. A preload of 5 N for 30 s was initially applied over the sample and steel ball. The wear tests 

were conducted at a load of 10 N for 30 min with a frequency of 50 Hz and half-slip amplitudes 
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in the range of 0.1 to 1 mm at ambient temperature and humility of ~50%. A computerized 

system was used to record the test parameters such as frequency, load, duration, friction 

coefficient, speed and temperature. The wear tracks were characterized by scanning electron 

microscopy (SEM) using a JEOL microscope. The three-dimensional topography of each wear 

scar was characterized by the BMT Expert3D morphology analyzer with a lateral resolution of 1 

μm and the highest vertical resolution approaching 1 nm. 

 

3. Results and discussion 

3.1. Microstructure  

The hot pressing of the Al84Ni7Gd6Co3 as-atomized (HP0) and ball milled (HP100) 

amorphous powders resulted in high densification of the nanocrystalline alloys producing bulk 

specimens with density of ~3.75 g/cm
3
 and low porosity (less than 0.5 vol.%). The 

microstructure of the hot pressed bulk Al84Ni7Gd6Co3 alloys is shown in Fig. 1 (for additional 

details see Ref. [5]). The HP0 specimen, Fig. 1a, mainly consists of regions with relatively 

coarse precipitates with a high volume fraction of nanometric intermetallic phases distributed in 

the fcc-Al matrix. The HP100 specimen exhibits a bimodal-like microstructure consisting of the 

regions with coarse and fine precipitates. The difference between the two microstructures is a 

result of the high-energy ball milling process applied only to the HP100 specimen prior to 

consolidation. Both regions with coarse and fine precipitates exhibit hybrid structures consisting 

of nanometric intermetallic phases and nanocrystalline fcc-Al matrix. The nanometric 

intermetallic phases are identified as Al19Gd3Ni5 intermetallic compounds (nanometric rod-like), 

Al3Gd and Al9Co2 (equiaxed particle-like) [5]. The size of the intermetallic phases ranges 

between tens to hundreds of nanometers, while the grain size of fcc-Al is of the order of 100 nm 
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[5]. The volume fraction of the intermetallic phases is as high as ~80 vol.%. Owing to the high 

volume fraction of the hard intermetallic phases (nanohardness: 6-9 GPa) and the confinement 

effect between the phases, HP0 and HP100 samples exhibit super-high strength and hardness [5]. 

More specifically, the Vickers hardness increases from ~3.1 GPa for HP0 to ~4.3 GPa for 

HP100, whereas the mechanical strength in compression was found to be ~1.4 GPa for HP0 and 

~1.8 GPa for HP100 [5]. For comparison, the Vickers hardness of pure Al (average grain size: 

~10 µm) and Al-12Si alloy (average grain size: ~22 µm) are ~0.3 GPa and ~0.6 GPa, 

respectively, whereas the yield strength of pure Al is about ~63 MPa and ~104 MPa for Al-12Si 

[27,28]. Further analysis on the synthesis process and microstructural characterization of the 

Al84Ni7Gd6Co3 was recently reported in Ref. [5].  

 

 

Fig. 1. SEM micrographs of Al84Ni7Gd6Co3 alloys: a) microstructure of HP0 specimens 

(consolidated gas-atomized powders), and b) microstructure of HP100 specimens (consolidated 

ball-milled powders). 

 

3.2. Reciprocating sliding wear tests 

The reciprocating sliding wear behavior of the nanocrystalline Al84Ni7Gd6Co3 alloys was 

studied under small amplitude oscillatory motion, for half-amplitudes in the range of 0.1 to 1 

mm, relative to a martensitic chrome steel counter-face. Fig. 2a shows the kinetic friction 
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coefficient (
kf ) between the counter-surfaces as a function of the sliding cycles at half - 

amplitude of 1 mm. The friction coefficient during oscillatory sliding motion was shown to be 

independent from the sliding amplitude for sliding amplitudes higher than 50 μm [29]. HP0 and 

HP100 specimens exhibit similar trends with the friction coefficient between the counter-

surfaces decreasing rapidly to a minimum value of about 0.38 after the initial running-in stage at 

approximately 5000 cycles, probably due to the formation and lubricating action of an oxide film 

that forms on the surface of Al-based materials and the removal of the initial roughness during 

the running-in period, which may result in a drop of the contact pressure. The rapid decrease of 

the friction coefficient is then followed by a gradual increase until it reaches a steady-state 

regime after about 35000 cycles, where the friction coefficient fluctuates around a mean value of 

about 0.7. This behavior could be attributed to the breakdown of the oxide film and the increase 

of adhesive frictional forces due to an increase of direct metal-to-metal contact areas [29]. In 

addition the formation of a higher density of debris particles in the contact between the counter-

surfaces can also contribute to the observed increase of the friction coefficient, as well as to the 

fluctuation of the recorded friction coefficient values as seen in figure 2a. Fig 2b compares the 

mean friction coefficient between the counter-surfaces at the steady-state regime for the 

Al84Ni7Gd6Co3 super-hard alloys (HP0 and HP100) with those obtained for pure Al and Al-12Si. 

The friction coefficient for HP0 and HP100 (fκ~0.7) appears to be noticeably lower than that for 

pure Al (fκ~1.1) and Al-12Si (fκ~1). The friction coefficient between two materials in relative 

motion depends on various parameters including the chemistry and surface properties of the 

counter-surfaces and the conditions of the relative motion [16, 30]. In the present case of Al-

based alloys, the lower friction coefficient of the nanocrystalline Al84Ni7Gd6Co3 alloys could be 

mainly attributed to the surface phenomena occurring in the tribo-systems during the relative 
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sliding motion of the counter-surfaces. The surface phenomena include the formation of surface 

oxide layers as well as the formation of a tribo-layer of debris between the contact surfaces, 

while the exact nature (chemistry and crystal structure) of the surface oxides forming in this 

tribosystem has not been identified in this work. The high hardness of the Al84Ni7Gd6Co3 

surfaces, (about 5 to 10 times higher than that of pure Al and Al-12Si), plays an important role 

for achieving lower levels of local plastic deformation at the asperities in contact with the 

counter surface and impede the disruption of the surface oxide film, thus hindering the direct 

metal-to-metal contact points between the two counter-surfaces [30-32]. Instead of the direct 

disruption of the surface oxide film by the counter material, a mild abrasion along with an 

oxidative wear mechanism may be the dominant mechanism for the Al84Ni7Gd6Co3 super-hard 

alloys. On the other hand, on the softer surfaces the local pressure on asperities can more easily 

lead to plastic deformation and breakdown of the surface oxide layers increasing the level of 

direct metal-to-metal contact between the tribo-materials, thus giving a rise to adhesive frictional 

forces. In addition, the more extensive local plastic deformation on the softer surfaces may 

potentially cause higher temperature rise on the surface that may also lead to more intensive 

adhesion between the counter-surfaces.  
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Fig. 2. (a) Kinetic friction coefficient between the investigated Al alloys and the martensitic 

chrome steel counter material as a function of the sliding cycles at half-amplitude of 1 mm for 

the Al84Ni7Gd6Co3 HP0 and HP100 alloys. (b) Comparison of the mean friction coefficient 

values between the counter-surfaces at the steady-state regime for the Al84Ni7Gd6Co3 and Al-

12Si alloys, and pure Al.  

 

Fig. 3a shows schematically the test configuration. Fig. 3b shows the wear scar on the 

surface of the HP100 specimen after a reciprocating sliding wear test with half-slip amplitude of 

1 mm, and Fig 3c depicts a 3-D profile of the wear scar. Based on the surface profile of the wear 

track, the reciprocating sliding wear volume was calculated using the following equation [27, 

33]: 

 2 3 / 3,f fV h R h 
                                         (1) 

where Vf  is the volume loss, h is depth of the fretting scar, and Rf  is given by the following 

formula: 

      Rf  = (T
2
 + h

2
) / 2h    ,                                                       (2) 
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where T is calculated as (d1 × d2)
-0.5

 / 2, with d1 and d2 being the principal diameters of the wear 

scar and any deviation from perfect circular shape was taken into account.  

 

 

Fig. 3. Wear surface morphology: (a) test configuration, (b) SEM micrograph of HP100, (c) 

three-dimensional view of the wear scar. 

 

Fig. 4 shows the volume loss for the nanocrystalline Al84Ni7Gd6Co3 alloys after the wear 

tests as a function of the half-sliding amplitude. The volume loss increases with increasing half-

slip amplitude approximately proportional to the total sliding distance. The lower volume wear 

loss for the harder HP100 (4.3 GPa, lower than that for the softer HP0, 3.1 GPa), indicates 

enhanced wear performance of HP100 compared to HP0. For example, when the half amplitude 

is 1 mm, the volume loss is 0.12 and 0.14 mm
3
 for HP100 and HP0, respectively.  
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Fig. 4. Wear volume loss vs. half-amplitude for the HP0 and HP100 alloys. 

 

Fig. 5 compares the volume loss for the Al84Ni7Gd6Co3 alloys with that for pure Al and Al-

12Si after the wear tests with half-sliding amplitude of 1mm. It can be clearly seen that the wear 

volume for the nanocrystalline Al84Ni7Gd6Co3 alloys (HP0 and HP100) is much lower than that 

for pure Al and Al-12Si, indicating the significantly enhanced wear resistance of these alloys. 

The wear volumes presented in Fig 5, exhibit a clear qualitative correlation with the hardness of 

the investigated materials. The superior wear performance of the nanocrystalline Al84Ni7Gd6Co3 

HP0 and HP100 alloys can be discussed in relation with the Archard’s wear law [34]. The 

Archard’s wear law, initially developed for sliding wear conditions, has been succesfully used to 

predict material loss in reciprocating sliding wear [35]: 

s

kWL
V

H
                                                                           (3) 

where sV is the volume loss, k is a dimensionless wear constant, W is the total normal load, L is 

the sliding distance and H is the hardness of the material. The hardness of HP100 alloys (4.3 

GPa) is higher than that for HP0 (3.1 GPa), thus, as expected, the wear volume loss is lower for 
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HP100 than HP0. This trend follows a satisfactory correlation with eq. 3 within the margins of 

the experimental error. Comparing the nanocrystalline Al84Ni7Gd6Co3 HP0 and HP100 alloys 

with pure Al and Al-12Si, the higher hardness of the former results in the significantly higher 

wear resistance and lower volume loss as observed in Fig. 5. The relationship between the 

volume loss and hardness does not directly follow the Archard’s equation if the wear constant k 

is considered the same for all the examined materials. However, the wear constant k  is related to 

the nature and the chemistry of the counter-surfaces in relative motion and, therefore, different 

values of k are expected for the nanocrystlline Al84Ni7Gd6Co3, pure Al and Al-12Si.  

 

 

Fig. 5. Wear volume loss for the nanocrystalline Al84Ni7Gd6Co3 alloys (HP0 and HP100), pure 

Al and Al-12Si alloy after wear tests with half-sliding amplitude of 1 mm. 
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Fig. 6. SEM images of the wear surface morphologies of the samples: (a) HP0, (b) HP100, (c) 

pure Al, and (d) Al-12Si alloy. 

 

 

Fig. 7. SEM images of the wear surface morphologies: (a) pure Al, (b) Al-12Si alloy, (c-e) HP0, 

and (f) HP100. 
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It is interesting to examine the differences in the wear mechanisms between the hard 

nanocrystalline Al84Ni7Gd6Co3 alloys and the softer Al and Al-12Si. Fig. 6 shows the 

morphology of the wear scars after the wear tests. The wear scars on pure Al (Fig. 6c) and Al-

12Si (Fig. 6d) have bigger size than those on the nanocrystalline Al84Ni7Gd6Co3 HP0 and HP100 

alloys, in accordance with the results shown in Fig. 3 and Fig. 4. The wear scar morphology of 

Figs. 6c and 6d indicates plastic deformation and plowing action of the softer Al and Al-12Si 

surfaces from the harder steel counter-material. A closer look of the morphology after the 

fretting tests reveals the presence of metallic debris, oxide particles, scratches, craters and signs 

of plastic deformation in the wear scars of on Al and Al-12Si surfaces, Figs. 7a and 7b. In 

addition, many cracks were observed on the worn surfaces for both pure Al and Al-12Si, which 

may give rise to wear by delamination. Unlike pure Al and Al-12Si, the nanocrystalline 

Al84Ni7Gd6Co3 alloys exhibit three-body abrasion wear conditions resulting from their unique 

microstructure and the high volume fraction of nanometric intermetallic compounds and 

nanocrystalline Al matrix, as shown in Fig. 1. In the wear scars of the nanocrystalline 

Al84Ni7Gd6Co3 alloys two main features can be observed (Figs. 7c-7f): submicron grooves 

created by an abrasive wear mechanism and the accumulation and compaction of wear debris 

that acts as a protective layer for the extensive wear of the these alloys. The particulate debris 

results from the wear of the surface layers of the nanocrystalline Al alloys at the initial steps of 

the wear test probably as a result of fretting fatigue damage and the brittle fracture of the 

intermetallic phases. The formation of large amount of submicron hard debris leads to three-body 

abrasive conditions.  A large part of the debris accumulates in the central region of the scars and 

becomes compacted and/or flattened during by the subsequent motion of the steel counter-face, 

Fig. 7c. The compaction of the loose debris particles in the central part of the scar can be 
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facilitated by a temperature rise during the sliding and wear process [33]. The rise of the 

temperature is often associated with the velocity of the relative motion and, therefore, it is 

expected to be higher in the center of the reciprocating sliding wear scar compared to the outer 

regions and for the wear tests with higher displacement amplitude (half amplitude: 1 mm). The 

sliding velocity under reciprocating sliding wear conditions can be estimated from the relation 

Vs=4df, where f is the frequency and d is the displacement [33]. On the other hand, the loose 

submicron debris particles lead to three third body abrasion conditions resulting in the formation 

of grooves and scratches in the wear track (Fig. 7f). Although the width of the grooves may vary 

depending on the size of the particulate debris, the vast majority of the grooves are smaller than 1 

µm in width, in accordance with the size of the submicron particulate debris, Fig. 7f. The 

flattened areas can be delaminated more easily compared to the metal matrix; the red circles in 

Fig. 7f highlight the formation of cracks due to embedded submicron debris on the flattened 

areas. However, no cracks in the metal matrix are observed. In the outer regions of the wear scars, 

loose particulate debris can be found with less flattened and compacted areas than that in the 

center of the scar. This wear scenario is schematically depicted in Fig. 8; in the initial steps of the 

wear process, the surface layers of the nanocrystalline alloys are worn, probably due to fretting 

surface fatigue, producing particulate debris that creates a third body between the contact of the 

two counter-surfaces, Figs. 8a and 8b. The debris can be flattened and/or sintered under the 

subsequent action of the steel counter-face, Fig. 8c-8d, creating a body that protects the 

nanocrystalline alloys from extensive wear and thus contributing to their enhanced wear 

resistance. Thus, the compacted debris plays a beneficial role for protecting the fresh metal 

matrix from wear.    



16 
 

 

Fig. 8. Schematic illustration of the wear mechanisms in Al-Ni-Gd-Co nanocrystalline alloys. 

 

Conclusions 

In this work, the reciprocating sliding wear behavior of high-strength nanocrystalline 

Al84Ni7Gd6Co3 alloys produced from amorphous precursors has been studied under 

unidirectional small amplitude oscillatory motion conditions. The exceptionally high hardness of 

these alloys lead to significantly enhanced wear resistance compared to pure Al and Al-12Si 

alloys. The volume loss for the Al84Ni7Gd6Co3 nanocrystalline alloy was found to be 3 to 4 times 

lower than that for pure aluminum and Al-12Si alloy. The enhanced wear performance of 

Al84Ni7Gd6Co3 nanocrystalline alloy is related to the unique microstructure consisting of about 
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80 vol.% nanometric intermetallic compounds and 20 vol.% nanocrystalline Al, which leads to 

ultra-high hardness values between 3-4.5 GPa, values that are the highest ever reported for Al 

alloys. Under the small amplitude sliding motion of the counter-surfaces, particulate debris is 

created probably due to fretting surface fatigue of the nanocrystalline Al84Ni7Gd6Co3 

nanocrystalline alloy during the initial stages of the wear tests leading to three body abrasive 

wear conditions. Under the subsequent motion of the steel counter-surface and the relative 

temperature rise, the debris can be flattened, compacted and sintered creating a body that protects 

the nanocrystalline alloys from extensive wear and thus contributing to the enhanced wear 

resistance.  
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Highlights 

 The reciprocating sliding wear behavior of high-strength nanocrystalline Al-based alloys has been 

studied. 

 The nanocrystalline Al alloys exhibit excellent wear resistance being significantly smaller than those 

for pure Al and Al-12Si alloys. 

 The enhanced wear resistance of the novel nanocrystaline Al alloys is related to their ultra-high 

hardness and the hybrid nanostructure. 

 The lower friction coefficient is mainly attributed to the formation of surface oxide layers as well as 

the formation of a tribo-layer of debris between the contact surfaces.  




