2,395 research outputs found

    Comprehension of familiar and unfamiliar native accents under adverse listening conditions

    Get PDF
    This study aimed to determine the relative processing cost associated with comprehension of an unfamiliar native accent under adverse listening conditions. Two sentence verification experiments were conducted in which listeners heard sentences at various signal-to-noise ratios. In Experiment 1, these sentences were spoken in a familiar or an unfamiliar native accent or in two familiar native accents. In Experiment 2, they were spoken in a familiar or unfamiliar native accent or in a nonnative accent. The results indicated that the differences between the native accents influenced the speed of language processing under adverse listening conditions and that this processing speed was modulated by the relative familiarity of the listener with the native accent. Furthermore, the results showed that the processing cost associated with the nonnative accent was larger than for the unfamiliar native accent

    Operational modules for space station construction

    Get PDF
    Identification of an effective space construction concept is a current objective of NASA studies. One concept, described in this memorandum, consists of repetitive use of operational modules, which minimizes on-orbit stay time for the shuttle. A space station constructed of operational modules may benefit from fabrication and system checkout in ground-based facilities, and since the modules are the primary structure of the space station, a minimum of additional structure, and trips and on-orbit stay time of the shuttle are required

    Renormalization of Coulomb interactions in s-wave superconductor Nax_xCoO2_2

    Full text link
    We study the renormalized Coulomb interactions due to retardation effect in Nax_xCoO2_2. Although the Morel-Anderson's pseudo potential for a1ga_{1g} orbital μa1g∗\mu^*_{a1g} is relatively large because the direct Coulomb repulsion UU is large, that for interband transition between a1ga_{1g} and eg′e_g' orbitals μa1g,eg′∗\mu^*_{a1g,eg'} is very small since the renormalization factor for pair hopping JJ is square of that for UU. Therefore, the s-wave superconductivity due to valence-band Suhl-Kondo mechanism will survive against strong Coulomb interactions. The interband hopping of Cooper pairs due to shear phonons is essential to understand the superconductivity in Nax_xCoO2_2.Comment: 2pages, 2figures, Proceedings of ICM in Kyoto, 200

    10-GHz fully differential Sallen–Key lowpass biquad filters in 55nm SiGe BICMOS technology

    Get PDF
    Multi-GHz lowpass filters are key components for many RF applications and are required for the implementation of integrated high-speed analog-to-digital and digital-to-analog converters and optical communication systems. In the last two decades, integrated filters in the Multi-GHz range have been implemented using III-V or SiGe technologies. In all cases in which the size of passive components is a concern, inductorless designs are preferred. Furthermore, due to the recent development of high-speed and high-resolution data converters, highly linear multi-GHz filters are required more and more. Classical open loop topologies are not able to achieve high linearity, and closed loop filters are preferred in all applications where linearity is a key requirement. In this work, we present a fully differential BiCMOS implementation of the classical Sallen Key filter, which is able to operate up to about 10 GHz by exploiting both the bipolar and MOS transistors of a commercial 55-nm BiCMOS technology. The layout of the biquad filter has been implemented, and the results of post-layout simulations are reported. The biquad stage exhibits excellent SFDR (64 dB) and dynamic range (about 50 dB) due to the closed loop operation, and good power efficiency (0.94 pW/Hz/pole) with respect to comparable active inductorless lowpass filters reported in the literature. Moreover, unlike other filters, it exploits the different active devices offered by commercial SiGe BiCMOS technologies. Parametric and Monte Carlo simulations are also included to assess the robustness of the proposed biquad filter against PVT and mismatch variations

    Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems

    Get PDF
    An innovative optical scheme to generate software-defined phase-modulated radio frequency (RF) pulses with carrier frequency agility from a mode-locked laser (MLL) is proposed. The technique exploits a direct digital synthesizer and a Mach-Zehnder modulator to apply an intermediate frequency modulation to the MLL's modes. The heterodyne detection of the optical signal allows the generation of amplitude- and phase-modulated RF carriers with very high phase stability, suitable for coherent radar applications. Further, a single MLL can be used to generate carriers simultaneously at different frequencies, enabling frequency hopping or multifunctional radars, with no need to increase the complexity of the transmitter. Results show chirped and Barker-coded pulses at around 10 or 40 GHz in a single setup, without any performance degradation while increasing the carrier frequency. The proposed technique allows the practical realization of compressed pulses for coherent radars over a wide carrier frequency range, allowing the development of software-defined radar systems with improved functionalities. © 1965-2012 IEEE

    An improved reversed miller compensation technique for three-stage CMOS OTAs with double pole-zero cancellation and almost single-pole frequency response

    Get PDF
    This paper presents an improved reversed nested Miller compensation technique exploiting a single additional feed-forward stage to obtain double pole-zero cancellation and ideally single-pole behavior, in a three-stage Miller amplifier. The approach allows designing a three-stage operational transconductance amplifier (OTA) with one dominant pole and two (ideally) mutually cancelling pole-zero doublets. We demonstrate the robustness of the proposed cancellation technique, showing that it is not significantly influenced by process and temperature variations. The proposed design equations allow setting the unity-gain frequency of the amplifier and the complex poles' resonance frequency and quality factor. We introduce the notion of bandwidth efficiency to quantify the OTA performance with respect to a telescopic cascode OTA for given load capacitance and power consumption constraints and demonstrate analytically that the proposed approach allows a bandwidth efficiency that can ideally approach 100%. A CMOS implementation of the proposed compensation technique is provided, in which a current reuse scheme is used to reduce the total current consumption. The OTA has been designed using a 130-nm CMOS process by STMicroelectronics and achieves a DC gain larger than 120 dB, with almost single-pole frequency response. Monte Carlo simulations have been performed to show the robustness of the proposed approach to process, voltage, and temperature (PVT) variations and mismatches

    Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars

    Get PDF
    A novel and flexible photonics-based scheme is proposed for generating phase-coded RF pulses suitable for coherent radar systems with pulse compression techniques. After selecting two modes from a mode-locked laser (MLL), the technique exploits an optical in-phase/quadrature modulator driven by a low-sample rate and low-noise direct digital synthesizer to modulate the phase of only one mode. The two laser modes are then heterodyned in a photodiode, and the RF pulse is properly filtered out. The scheme is experimentally validated implementing a 4-bit Barker code and a linear chirp on radar pulses with a carrier frequency of about 25 GHz, starting from an MLL at about 10 GHz. The measures of phase noise, amplitude- and phase-transients, and autocorrelation functions confirm the effectiveness of the scheme in producing compressed radar pulses without affecting the phase stability of the optically generated high-frequency carriers. An increase in the radar resolution from 150 to 37.5 m is calculated. The proposed scheme is capable of flexibly generating software-defined phase-modulated RF pulses with high stability, even at very high carrier frequency, using only a single commercial device with potentials for wideband modulation. It can therefore allow a new generation of high-resolution coherent radars with reduced complexity and cost. © 1983-2012 IEEE

    Flexible multi-band OFDM receiver based on optical down-conversion for millimeter waveband wireless base stations

    Get PDF
    A novel and flexible photonics-based down-conversion scheme is proposed for wireless receivers in base stations. It allows simultaneous detection of multiple signals at carriers up to tens of GHz, enabling communications at millimeter waves. Experiments demonstrate the effective down-conversion of Wi-Fi signals at 2.4 and 39.8GHz with EVM<;-43dB

    Methods for Model Complexity Reduction for the Nonlinear Calibration of Amplifiers Using Volterra Kernels

    Get PDF
    Volterra models allow modeling nonlinear dynamical systems, even though they require the estimation of a large number of parameters and have, consequently, potentially large computational costs. The pruning of Volterra models is thus of fundamental importance to reduce the computational costs of nonlinear calibration, and improve stability and speed, while preserving accuracy. Several techniques (LASSO, DOMP and OBS) and their variants (WLASSO and OBD) are compared in this paper for the experimental calibration of an IF amplifier. The results show that Volterra models can be simplified, yielding models that are 4–5 times sparser, with a limited impact on accuracy. About 6 dB of improved Error Vector Magnitude (EVM) is obtained, improving the dynamic range of the amplifiers. The Symbol Error Rate (SER) is greatly reduced by calibration at a large input power, and pruning reduces the model complexity without hindering SER. Hence, pruning allows improving the dynamic range of the amplifier, with almost an order of magnitude reduction in model complexity. We propose the OBS technique, used in the neural network field, in conjunction with the better known DOMP technique, to prune the model with the best accuracy. The simulations show, in fact, that the OBS and DOMP techniques outperform the others, and OBD, LASSO and WLASSO are, in turn, less efficient. A methodology for pruning in the complex domain is described, based on the Frisch–Waugh–Lovell (FWL) theorem, to separate the linear and nonlinear sections of the model. This is essential because linear models are used for equalization and cannot be pruned to preserve model generality vis-a-vis channel variations, whereas nonlinear models must be pruned as much as possible to minimize the computational overhead. This methodology can be extended to models other than the Volterra one, as the only conditions we impose on the nonlinear model are that it is feedforward and linear in the parameters

    Anthropogenic fibers and microplastics in the pelagic gooseneck barnacle Lepas (Lepas) anatifera in Capo Milazzo Marine Protected Area (Tyrrhenian Sea): A first characterization

    Get PDF
    This study provides an assessment of the efficiency of the biofouler Lepas (Lepas) anatifera Linnaeus, 1758 in capturing microplastics and microfiber particles floating in the water column. In this context, we collected pelagic gooseneck barnacles at fixed moorings in the Capo Milazzo Marine Protected Area (MPA). Fibers and fragments were found in the digestive tract of 30% of the 120 specimens collected. The ingested debris were mainly fibers (85.9%) of synthetic (30.6%) and natural (11.7%) origin, with length ranging between 1 and 2 mm (33.3%) and transparent (47.2%). The highest concentration of fibers was recorded in barnacles collected in the western sector of the MPA that is more affected by the input of organic matter coming from several urban wastewaters. No correlation was found between the presence of artificial polymers in L. (Lepas) anatifera and the size of individuals. The great diversity of fibers and plastic fragments by typology, size, shape and color, as well as the large number of bivalve and ostracod shells found in the digestive tract of the samples, confirm the opportunistic diet of these organisms, which can indiscriminately ingest any type of prey and cannot distinguish between microplastics and food. The results obtained, as well as the wide distribution and abundance, and ease of sampling of these barnacle species in macrofouling suggest that including this species in monitoring programs could be a cost-effective and easy method for assessing the presence of microplastics and microfibers in coastal marine waters to monitor the ecological status of pelagic and coastal ecosystems, including MPAs
    • …
    corecore