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Abstract: Volterra models allow modeling nonlinear dynamical systems, even though they require 

the estimation of a large number of parameters and have, consequently, potentially large computa-

tional costs. The pruning of Volterra models is thus of fundamental importance to reduce the com-

putational costs of nonlinear calibration, and improve stability and speed, while preserving accu-

racy. Several techniques (LASSO, DOMP and OBS) and their variants (WLASSO and OBD) are com-

pared in this paper for the experimental calibration of an IF amplifier. The results show that Volterra 

models can be simplified, yielding models that are 4–5 times sparser, with a limited impact on ac-

curacy. About 6 dB of improved Error Vector Magnitude (EVM) is obtained, improving the dynamic 

range of the amplifiers. The Symbol Error Rate (SER) is greatly reduced by calibration at a large 

input power, and pruning reduces the model complexity without hindering SER. Hence, pruning 

allows improving the dynamic range of the amplifier, with almost an order of magnitude reduction 

in model complexity. We propose the OBS technique, used in the neural network field, in conjunc-

tion with the better known DOMP technique, to prune the model with the best accuracy. The sim-

ulations show, in fact, that the OBS and DOMP techniques outperform the others, and OBD, LASSO 

and WLASSO are, in turn, less efficient. A methodology for pruning in the complex domain is de-

scribed, based on the Frisch–Waugh–Lovell (FWL) theorem, to separate the linear and nonlinear 

sections of the model. This is essential because linear models are used for equalization and cannot 

be pruned to preserve model generality vis-a-vis channel variations, whereas nonlinear models 

must be pruned as much as possible to minimize the computational overhead. This methodology 

can be extended to models other than the Volterra one, as the only conditions we impose on the 

nonlinear model are that it is feedforward and linear in the parameters. 

Keywords: digital calibration; nonlinear models; complexity reduction; amplifiers; analog circuits; 
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1. Introduction 

Modern communication systems are increasingly relying on digital signal pro-

cessing, and the availability of the signal in digital form allows calibration in the digital 

domain, enabling the so-called digitally assisted analog electronics [1,2], where digital 

calibration is used to improve the performance of analog blocks. For instance, power am-

plifiers [3–6], IQ mixers [7,8] and ADCs [9–13] can be digitally enhanced, correcting non-

linear errors, I/Q mismatches, channel mismatches, etc. In particular, calibration can be 

used to reduce the nonlinearity of system components, and even of the entire system [14–

17], by correcting nonlinear errors and improve the dynamic range of the system. For this 

goal, nonlinear models are required. 

Volterra models [18] are often used to describe weakly nonlinear systems where 

memory effects are relevant. Depending on the required maximum nonlinearity order 

and memory depth, Volterra models may require a large number of parameters, resulting 
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in high computational complexity and estimation problems. However, many of these pa-

rameters are often of little significance, and can be neglected with a limited loss of preci-

sion and a net reduction in computational complexity and resource cost. 

Several complexity-reducing techniques have been presented in the literature to find 

sparse solutions without impairing model accuracy based on different principles. Spar-

sity, i.e., forcing parameters to 0, allows the reduction in the computational cost of the 

model by removing (“pruning”) as many nonlinear terms as possible, in a manner that is 

compatible with the required accuracy. The Optimal Brain Surgeon (OBS) algorithm [19–

23] starts from the largest model and iteratively removes the least significant coefficient 

until the simplest (and least accurate) model is found. It is mainly used in the neural net-

work field and apparently has never been used for pruning Volterra models, which can 

be interpreted as a special case of neural networks [24]. The authors of [22] drew a parallel 

between neural and Volterra networks, proposed an analytical method to identify 

Volterra coefficients from the coefficients of a neural network and successfully compared 

their proposed method with the OBS and OBD [19,21] techniques. Their target application 

was face recognition. On the other hand, Orthogonal Matching Pursuit (OMP) techniques 

[25–27] start from the simplest model, finding the most correlated regressor, and itera-

tively add complexity to the model to improve accuracy. They are the techniques of choice 

in most of the literature on nonlinear calibration. Finally, Least Absolute Shrinkage and 

Selection Operator (LASSO) techniques [28] use weighting and regularization to find 

sparse solutions. These techniques use the L1-norm regularization term, which enforces 

sparsity, and depend on a regularization parameter, which indirectly determines the 

trade-off between sparsity and accuracy. 

Variants of these techniques also exist. The Optimal Brain Damage (OBD) approach 

is a simplified version of OBS, which assumes orthogonal regressors [19,21]. Doubly OMP 

(DOMP) [27] is an improvement of the conventional OMP that employs the orthogonali-

zation of the residual regressors. A variant of the LASSO technique [28] is the weighted 

LASSO (WLASSO) algorithm, which uses the least squares coefficients of the L2-norm 

regularized regression as weighting in the L1-norm regularizer. 

Once a pruned model is obtained, estimation can be performed in real time with tech-

niques such as least squares adaptive filters [29]. All these pruning techniques result in 

different trade-offs between complexity reduction and loss of precision, and one of the 

goals of this paper is to compare them to investigate their performance in optimizing the 

precision–complexity trade-off, with reference to the experimental calibration of an IF am-

plifier fed by QAM waveforms [30,31]. 

First, we present a methodology for pruning the nonlinear section of the Volterra 

model in the complex domain, while leaving the linear section (used for channel equali-

zation) unaffected. In fact, while the channel’s frequency response depends on many fac-

tors and the equalizer cannot be simplified without losing generalizability, the nonlinear 

response depends on the devices in the transmitter or receiver sections and is relatively 

time invariant. Hence, pruning of the linear section should be avoided. This is achieved 

by using the Frisch–Waugh–Lovell [32] theorem to separate regression in the linear and 

nonlinear steps, and performing pruning only on the latter. Pruning is performed in the 

complex domain, to make it compatible with the conventional linear equalization tech-

niques used in communication systems [30,31]. 

This allows stating important guidelines for the choice of the most appropriate prun-

ing technique to simplify the calibration model for RF systems, minimizing the computa-

tional complexity of the models without impacting accuracy. We prove that, in our da-

taset, the DOMP and OBS techniques outperform the others, and their combined use cre-

ates the best approximation of the optimal complexity–accuracy trade-off. 

The same methodology can be applied to any nonlinear model, even those not de-

rived by Volterra theory. In our derivation, in fact, we only assume that the model has no 

feedback (it is feedforward) and is linear in the parameters. Volterra models are thus only 

a subset of the class of nonlinear models that can be pruned using our approach. 
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The paper is organized as follows. Section 2 summarizes Volterra models in the real 

and complex domains, and the complexity-reducing algorithms to find sparse solutions 

for the linear-in-the-parameters (LIP) feedforward models used in this paper. Section 3 

describes the experimental setup and the model identification techniques used to find the 

optimal calibration coefficients from known input waveforms. Section 4 shows and dis-

cusses the experimental results. Section 5 is the conclusion. 

2. Volterra Models and Pruning Techniques 

Nonlinear calibration techniques attempt to correct linear and nonlinear errors aris-

ing in electronic systems due to active devices. There is no standard model for nonlinear-

ities, especially for dynamic nonlinearities, i.e., nonlinear effects with memory. 

Usually, Volterra series are used, but these models easily become unmanageable due 

to the large number of coefficients. Volterra models can model weak nonlinear continuous 

systems with good accuracy [18], as they are based on a polynomial expansion of the non-

linear behavior of a system with memory. Such distortions are commonplace in analog 

and RF devices operating close to their maximum output power, but they are less adept 

for modeling discontinuities, such as those arising in ADCs or DACs [13]. Hence, we con-

sidered an IF amplifier as testbed for our comparison of pruning techniques. 

We considered a nonlinear calibration technique that assumes the knowledge of the 

input transmitted signal (for instance, an equalization preamble in a packet-based com-

munication system), and we focused on linear-in-the-parameters (LIP) feedforward mod-

els, where the nonlinear output is a linear combination of linear and nonlinear functions 

of the input, without feedback. 

Since we assumed the system is sampled, we modeled the amplifier as a discrete-

time system. The input signal is �[�], sampled at the rate ��, and produced by a DAC, 

whose linearity and noise were assumed to be better than that of the amplifier to be cali-

brated. The output of the device to be calibrated was �[�], which was sampled, at the 

same rate, by an ADC, whose accuracy was also supposed to be better than that of the 

device to be calibrated. IF signals of bandwidth ��  around the carrier ��  were used, 

with 0 < �� −
��

2� < �� +
��

2� <
��

2� . 

In general, the nonlinear function describing the device is not known, and may be 

written as: 

�[�] = �(�[�], … , �[� − � + 1]) (1)

where � − 1 is the maximum memory depth of the system, which in principle may be 

infinite. The system is causal, meaning that only present and past input samples affect the 

output, and feedforward, implying that the actual output does not depend on the previ-

ous values of the output. 

Digital calibration consists of approximating the inverse function of �(∙) in the digi-

tal domain, so that the calibrated output �[�] is as close as possible to the input �[�]. In 

this way, all deterministic errors affecting �[�] are ideally removed (assuming system (1) 

is invertible): 

�[�] = �(�[�], … , �[� − � + 1]). (2)

Since such a model is unworkable, we focused on models that are linear-in-the-pa-

rameters and feedforward: 

�[�] = � ������[�], … , �[� − � + 1]�

���

�

. (3)

This model has � unknown parameters, ��, which are the coefficients of the linear 

combination of the known nonlinear functions ��(∙) of the input signal, including its past 

values. The use of LIP models ensures that a wide array of estimation algorithms for linear 
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models can be employed: batch least squares, recursive least squares (RLS), least mean 

squares (LMS), etc. [29]. 

As the assumption implicit in (3) is that the output only depends on the input, i.e., it 

does not depend on the past values of the output. Such models are called feedforward, as 

there is no feedback of the output toward the input, and are a generalization of finite im-

pulse response (FIR) filters. For instance, if ����[�], … , �[� − � + 1]� ≡ �[� − �], and � =

�, the model in (2) becomes a FIR filter, which is the workhorse of linear equalization 

techniques in telecommunications. The Volterra models we used in this paper are an ex-

ample of LIP feedforward models, and can be considered generalizations of linear equal-

ization. This implies, of course, that nonlinear models can perform both linear and non-

linear calibration, where linear calibration is commonly referred to as equalization. 

Equation (3) is more general than Volterra models, because feedforward Volterra 

models are a subset of feedforward LIP models. The class of models described by Equation 

(3) also includes other models, such as functional-link artificial neural networks (FLANN) 

[33], and some of the restricted Volterra models [9,10] proposed in the literature to reduce 

model complexity a priori. Additionally, Hammerstein models [34] are feedforward and 

LIP. The methodology and techniques presented in this paper can be extended to any 

model that is both feedforward and LIP. 

2.1. Real Volterra Models 

(Feedforward) Volterra models are a generalization of FIR filters that allow for non-

linear behavior with memory. They can also be considered generalizations of the simplest 

nonlinear model: the memoryless polynomial. 

In general, the Volterra model is the sum of kernels of degree � = 1, … , �, where mo-

nomials of order � are obtained from the input �[�] using lagged terms up to a delay 

�(�) − 1, where the memory length can be a function of the degree, to minimize model 

complexity [9,10]. For instance, ��[�] is a term of degree 2 and delays (0,0), whereas 

�[� − 1]�[� − 2]�[� − 3] is a term of degree 3 and delays (1,2,3). There are � possible 

delays for a term of degree �, each going from 0 to �(�) − 1. For instance, with � = 3 

and �(�) = 4, all the combinations of delays are the tuples from (0,0,0) to (3,3,3). Since 

products are commutative, delays can be placed in non-decreasing order: (��, ��, ��) 

would yield the same monomial as any permutation of the same indexes, such as 

(��, ��, ��). Hence, we focused on non-decreasing tuples and wrote the output of the 

kernel of degree � as: 

��[�] = � ⋯ � ���…��
�[� − ��] ⋯ ��� − ���

����

�������

����

����

. (4)

Finally, the output of the Volterra model is the sum of the outputs of the Volterra 

kernels, up to the highest order �: 

�[�] = � ��[�]

�

���

. (5)

The model may include a term of order 0, which is the offset. 

The main problem with Volterra models is the number of coefficients: a 5th-order 

model with a delay of 4 would have 126 free parameters. The computational cost of 

Volterra models depends on the number of free parameters that needs to be estimated, 

plus a setup cost (which is significantly lower than the number of parameters) to compute 

all the monomials in the Volterra kernels. The number of free parameters to estimate has 

a direct impact on the complexity of the estimation technique, estimation convergence 

time and the stability of the estimation algorithms [29]. Hence, model pruning is of the 

essence to reduce model complexity and improve convergence time, i.e., the number of 

known samples required to identify the system. Model pruning reduces the cost of real-
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time correction and makes parameter estimation easier, faster and less prone to numerical 

problems. 

2.2. Complex Volterra Models 

Usually, equalization in communication systems is performed in the complex do-

main [30,31], after demodulation and carrier and timing recovery, to minimize the linear 

and nonlinear Inter-Symbol Interference (ISI) and allow symbol decision with the lowest 

Symbol Error Rate (SER). For this reason, we performed nonlinear calibration in the com-

plex domain, so that it can be performed together with linear equalization. We thus need 

to express the Volterra models in the complex domain. Hence, we defined the intermedi-

ate frequency (IF) and baseband frequency (BF) signals, where �� is the normalized car-

rier frequency �� = 2�����, with �� the carrier frequency in Hz, and �� the sampling pe-

riod: 

���[�] = ℝ�{���[�]�����}. (6)

A FIR filter can be written as: 

���[�] = � ℎ����[� − �]

���

���

= ℝ� �� ℎ����[� − �]����(���)
���

���
�. (7)

If we rewrite the second expression, we obtain: 

���[�] = � ℎ����[� − �]������
���

���
. (8)

Hence, a linear filter in the IF domain is equivalent to a linear filter in the BF domain, 

with the same (real) coefficients ℎ�, if the BF samples are phase rotated by ������ and 

delayed by �. 

Similar calculations hold for Volterra kernels of higher degrees. For instance, a ge-

neric quadratic term can be written as: 

���[� − �]���[� − �] = ℝ�����[� − �]����(���)�ℝ�����[� − �]����(���)�. (9)

By writing ℝ�{�} =
�

�
(� + �∗), it is possible to obtain: 

���[� − �]���[� − �] =
�

�
ℝ�����[� − �]���[� − �]����(������) +

���[� − �]���
∗ [� − �]����(����)�. 

(10)

Similar relations can be obtained for higher-order kernels. Hence, IF kernels can be 

expressed in terms of the BF components, and the Volterra coefficients remain real and 

have the same value. 

Some of the terms are frequency-modulated around 0, �� or multiples of the carrier. 

For instance, ���[� − �]���
∗ [� − �]����(����)  can be rewritten as ���[� − �]���

∗ [� −

�]����(������)�����, and the BF component is evidently modulated by −��. Such terms 

arise because nonlinearities produce terms at other frequencies. In narrowband systems, 

it is possible to neglect all the terms but those around ��, but we used all the terms be-

cause our system is wideband and because terms at carrier frequencies 2�� or 3�� may 

alias at lower frequencies owing to sampling. 

The above equations were verified using MATLAB. The output of the IF model was 

the same as the output of the BF model with the same coefficients. 

2.3. Orthogonalization and Linear and Nonlinear Sub-Models 

Nonlinear effects are mostly due to the active elements in the transmitter and the 

receiver, so that most distortions occur before and after the channel. On the other hand, 

the channel adds a significant amount of linear gain and phase errors, which are usually 

removed via linear equalization. Hence, nonlinear errors are mostly predictable because 
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they are caused by the transmit and receive hardware, whereas linear errors are time-

varying, as they depend on channel conditions. Consequently, pruning can be used to 

select the correct nonlinear model, which is fixed, but cannot be used to select the linear 

coefficients, because each of them may be relevant or not depending on the channel’s fre-

quency response, which varies with time. Hence, a technique is required to separate linear 

and nonlinear coefficients in order to perform pruning only on the nonlinear part of the 

model. 

This operation can be performed via the Frisch–Waugh–Lovell (FWL) theorem [32], 

which states that identification of a model with � variables can be performed in two 

steps, using the first �� < � variables (the linear section) in the first step and the other 

�� = � − �� (the nonlinear section) in the second step. The theorem states that estimation 

yields the same residual and the same coefficients for the second step (the nonlinear sec-

tion of the model) if the first variables are used to regress both the output and the remain-

ing �� variables. 

Basically, the FWL theorem orthogonalizes the output and the nonlinear section of 

the model with respect to the linear section, whose effect is completely removed. The ge-

neric nonlinear model, depending on a parameter vector �, with desired response � and 

input matrix �, can be split in two parts with input matrices �� and ��. We can then 

regress � and �� over �� to remove the effect of linear filtering on the output and on 

the nonlinear sub-model. 

� = �� = ���� + ����. (11)

where � ≡ [��; ��] and � = [��; ��]. The linear section �� is used to regress the output 

� and the nonlinear section ��. The resulting regression coefficients are called ��� and 

��� and, in general, ��� ≠ ��. In this way, both the desired response � and the nonlinear 

sub-model �� become orthogonal to ��, and the regression of the residual of � over the 

residual of ��  (after regression against �� ) can be performed. Thence, the nonlinear 

model can be estimated using the regressed nonlinear section, and the ensuing parameter 

vector �� and the final error are the same: 

� − ����� = (�� − �����)�� ≡ � − �� = � − ���� − ����. (12)

In our case, � is the � × � design matrix whose columns are the nonlinear functions 

��(∙) of the system output �[�], which is divided into a linear section �� and a nonlinear 

section �� containing all the Volterra terms of order higher than 1. � is the desired input 

of the system �[�], and � is the number of samples. Because the models are LIP, linear 

regression techniques can be used for estimation. 

In a communication system, the length of the linear section (which also includes an 

offset term) mostly depends on the channel, with a limited impact on the transmit and 

receive hardware. Hence, the length of the linear model �� will in general be much larger 

in a real application than in our experimental setting, where a single IF amplifier is mod-

eled. However, the pruned nonlinear coefficients, mostly caused by the transmit and re-

ceive hardware, will not change with the channel, though they may slowly depend on 

bias or temperature parameters in the active devices. 

We performed pruning only on the nonlinear section, so that we could select a simple 

nonlinear sub-model with good accuracy and limited hardware cost. Once the model is 

selected, the linear and nonlinear sections may be estimated together, so that the FWL 

theorem is only used for (off-line) model selection and not for real-time model estimation. 

2.4. Pruning Techniques 

Due to the large number of unknown parameters to be estimated, Volterra models 

are unworkable in practice and should be simplified. Moreover, in most practical cases, 
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many of the parameters convey little information. Thus, the models can be greatly simpli-

fied without hindering accuracy. Several techniques can be employed to reduce model 

complexity, and they are described in the following sub-sections. 

2.4.1. Optimal Brain Surgeon (OBS) 

The OBS technique [19–23] has been proposed in the neural networks field to reduce 

the number of neurons with as little impact as possible on accuracy. The algorithm is 

greedy and starts from the full model, and then removes the least important coefficients 

one by one. 

The algorithm estimates the importance of each coefficient by computing a score that 

depends on the coefficient value and its Hessian. The score is the result of a greedy opti-

mization procedure that chooses the minimum residual error of the model constrained to 

have one zero coefficient. For a model of � parameters, there are � possible models with 

� − 1 coefficients: some terms will be important, and their removal will significantly re-

duce accuracy, while others may be irrelevant and have little or no impact on accuracy. 

The OBS algorithm evaluates the importance of each parameter in the model by removing 

the one that has the lowest impact on accuracy. It is the closed-form solution of the itera-

tive pruning procedure advocated in [9,10], and yields the same result. At each iteration, 

a linear constrained optimization problem is solved in closed form, so the decision is iter-

atively (greedily) optimal. 

The main cost of the OBS technique is computing the diagonal of the inverse Hessian 

matrix of the regression problem. By assuming a diagonal Hessian, the problem can be 

greatly simplified at the expense of accuracy: the optimal brain damage (OBD) algorithm 

[19,21] is thus an approximate low-cost version of the OBS. Its performance is usually in-

ferior, especially for high-correlated residuals, which are common in Volterra models. We 

compared both the OBS and OBD in the following, and while OBS is usually the best al-

gorithm for pruning, OBD is not and should be avoided. Both OBS and OBD start with an 

accurate, but complex, model and yield simpler and simpler models at each iteration, at-

tempting to minimize the loss of accuracy. 

Since the OBS has never been used before for pruning Volterra kernels, whereas OMP 

and LASSO are not new to the field of nonlinear calibration with Volterra models, we add 

more details about this technique in what follows. 

The general linear model � ≈ �� has a residual error � = � − ��, whose energy can 

be written as � = �′�, where the superscript is the transpose operator. 

The ideal unconstrained model � must be constrained to have a zero coefficient, so 

that it is perturbed by a variation � subject to the constraint �� + �� = 0 for the coefficient 

�. The goal is to choose � optimally, i.e., minimizing the increase in the model error. The 

unconstrained model has the following error: 

�� = ��� = ��� − 2����� + ������. (13)

The constrained model has a larger error, because the unconstrained model was es-

timated to have the lowest possible residual error, ��: 

�� = �� + ���′��. (14)

This error depends on the parameter that has been nulled, and the goal is to find the 

parameter whose removal produces the lowest excess error. The Lagrangian of the con-

strained optimization problem is: 

Γ = �� + �1�
�(� + �) (15)

where 1� is a column vector of all zeros with only one ‘1′ in position �, so that 1�
�(� + �) ≡

�� + �� = 0. Forcing to zero the partial derivatives over � and � yields: 
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⎩
⎨

⎧ δ =
λ

2
(���)��1�

� =
21�

��

1�
�(���)��1�

≡
2��

���

 (16)

where ��� = 1�
�(���)��1�  is the � -th diagonal element of the inverse Hessian matrix. 

Hence: 

�� = �� +
��

�

���
� 1�

�(���)��1� = �� +
��

�

���

. (17)

The coefficient with the least effect on the error for the constrained model is the one 

with the minimum �� , which is also the one with the minimum ��
�/���. This term is called 

the score, and the coefficient with the minimum score is eliminated, to produce a sparser 

model with the least additional error among all the models with one zero coefficient. 

In the OBD algorithm, the cumbersome computation of � = (���)�� is replaced by 

the inverse of the �-th diagonal element of �′�. However, this is exact only when the ma-

trix is diagonal, otherwise the inverse of the diagonal is not the diagonal of the inverse. 

The OBD is thus numerically simpler, but less accurate for non-diagonal (i.e., correlated) 

input matrices. 

2.4.2. Orthogonal Matching Pursuit (OMP) 

The OMP technique [25–27] operates in the opposite direction: it starts from the sim-

plest model, by selecting the regressor with the highest absolute correlation coefficient, 

and then adds one element at a time to improve accuracy as quickly as possible. 

The OMP technique has several variants. DOMP (doubly OMP [27]), for instance, 

performs the orthogonalization of all the residual (unused) regressors, i.e., something sim-

ilar to a Gram–Schmidt orthogonalization procedure. At each step, the regressor with the 

highest correlation is selected, and the output and all the residual regressors are regressed 

and orthogonalized. This also imply that no matrix operations are required [32], because 

regression is computed one variable at a time. 

Because of its superior numerical performance and analytical equivalence, we used 

the DOMP technique throughout this paper. The traditional OMP would yield the same 

result using high-precision arithmetic, but worse results on finite-precision machines. 

OMP algorithms start with models with low complexity and low accuracy, and at-

tempt to improve accuracy as quickly as possible, yielding progressively more complex, 

but more accurate, models. 

2.4.3. Least Absolute Shrinkage and Selection Operator (LASSO) 

The LASSO technique [28] employs an L1-norm regularization to enforce sparsity in 

the parameter vector. This is a common relaxation of the intractable L0-norm optimiza-

tion: while the L0-norm is the sparsity of the vector (the number of nonzero components) 

and yields a non-convex optimization problem, the L1-norm is the sum of the absolute 

values of the regressors and yields a quadratic programming problem that can be easily 

solved using standard techniques, such as interior-point methods. 

A variant of the LASSO technique, the weighted LASSO (WLASSO), uses a diagonal 

weighting matrix proportional to the inverse of the absolute value of the model obtained 

through conventional L2-norm regression (eventually with L2-norm regularization to en-

sure stability in the case of a strong correlation between the regressors). Hence, coefficients 

with larger values have lower weight, whereas small values are amplified. This results in 

a better performance because sparsity is reinforced by weighting. WLASSO outperforms 

LASSO. There are two regularization parameters: one for the initial L2-norm regularized 

regression, required to compute the weights, and one for the L1-norm regularized regres-

sion, which provides the actual coefficients. 
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While the OBS and OMP techniques change the model size one element at a time 

(producing iteratively smaller models in the OBS and larger models in the OMP), regular-

ization yields an unpredictable level of sparsity, so many regressions with different regu-

larization parameters need to be performed to estimate the accuracy–complexity frontier. 

The size of the pruned model cannot be predicted a priori, and sometimes different mod-

els with the same complexity (number of parameters) are selected with different regular-

ization parameters. In this case, the model with the highest accuracy is selected among all 

those with the same complexity, yielding the optimal accuracy–complexity trade-off of 

the LASSO and WLASSO algorithms. Both algorithms are, however, outperformed by 

OBS and DOMP, as shown in Section 4. 

3. Experimental Setup 

We performed the experiments on a MiniCircuits ZX60-100VH+ IF amplifier [35], 

connected to an FMC150 board containing two 250MSps 14-bit ADCs and two 250MSps 

14-bit DACs, and a Virtex-7 FPGA. The results were validated using different waveforms 

(with QAM-64 constellation) and different acquisitions of the same waveform. 

The amplifier has a gain of 36 dB and a bandwidth of 0.3–100 MHz; with an output 

compression point of 30 dBm, it accepts power levels up to about −6 dBm before compres-

sion. It was tested using modulated waveforms of 50 MHz bandwidth around a 50 MHz 

carrier. 

The setup, composed of the DAC, connected through SMA cables to the amplifier to 

calibrate, and finally to the ADC, included several attenuators to have roughly unitary 

gain. An input attenuator of 3 dB and two output attenuators for a total of 30 dB were 

added. The attenuators, of the VAT-X+ series by Mini-Circuits, had 6GHz bandwidth, so 

their frequency response is almost ideal in the band of interest. The ADC was preceded 

by a SLP-100+ lowpass filter with 100 MHz bandwidth as anti-aliasing filter. The DAC 

and ADC, operating at 250MSps, were AC-coupled. The DAC was also connected to a 

built-in lowpass filter; hence, the usable input bandwidth was about 10–80 MHz. 

Preliminarily, we tested the DAC/ADC loop alone to check the Error Vector Magni-

tude (EVM) of the setup without amplifiers. The DAC/ADC chain without any amplifier 

or attenuator has an EVM of 0.6% with a FIR filter of 9 taps, and 0.2% with a FIR filter of 

21 taps. This sets the upper limit to accuracy. The accuracy was estimated as the error after 

linear calibration of a QAM waveform with 50MHz carrier frequency and 50 MHz band-

width. These results show that the accuracy of the DAC and ADC chain is better than the 

system to be analyzed and calibrated, which implies that our calibration techniques actu-

ally improve the performance of the IF amplifier, and not of the experimental setup. 

Furthermore, Volterra models cannot improve the DAC/ADC chain, whose distor-

tions are not due to weak nonlinearities as those modeled by Volterra kernels, so that 

calibration is pointless for the DAC/ADC chain and can only improve the performance of 

the amplifier. The averaging of seven waveforms limited the impact on the accuracy of 

the DAC/ADC chain (−1.3 dB EVM, instead of the theoretical −8.5 dB if all the EVM 

were due to noise and averaging were effective in reducing errors), suggesting that almost 

the entirety of the error between the received and transmitted waveforms is due to non-

stochastic effects. 

Of course, a significant improvement in linearity was obtained after calibration when 

the amplifier was included, because the amplifier introduced significant distortions, 

which could be improved due to the use of Volterra models. However, these preliminary 

tests show that linearity and noise are not limited by the ADC/DAC chain, so the impair-

ments of the amplifier dominate the EVM and SER results. 

4. Experimental Results and Discussion 

This section reports on the experimental results. The full-scale value of the DAC is 1 

Vpp and the input waveform had a peak-to-peak swing of 900 mVpp. The full-scale value 
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of the ADC is 2 Vpp, so the expected output swing of the received waveform was about 

32% of the full swing of the ADC. This was confirmed by the measurements. 

Additional measurements with 1, 2, 3 and 6 dB of additional input attenuation were 

made, but, after 3 dB, the SER was zero even without calibration (only linear equalization 

was necessary), because EVM was limited. Nonlinear ISI is significant only for a large 

input power. 

Several waveforms were acquired, each with more than 3000 symbols and thus 15,000 

samples, for different QAM-64 waveforms and different acquisitions of the same wave-

form to allow the averaging of stochastic effects. Averaging had a limited impact on per-

formance, implying that linear and nonlinear deterministic errors are dominant. 

Characterization of the IF Amplifier 

Figure 1 shows the transmitted and received spectra. Spectral regrowth is clearly ev-

ident in the output waveform (red) with respect to the input waveform (black). The output 

spectrum has about 3 dB of gain loss at 80 MHz, which is compatible with the 80 MHz 

pulse-shaping lowpass filter after the DAC. The nonlinear spectral regrowth after the am-

plifier is attenuated after 100 MHz by the anti-aliasing lowpass filter before the ADC. 

 

Figure 1. Input (black) and output (red) spectra. Spectral regrowth is clearly visible at the output. 

Complex linear and nonlinear equalizers [30,31] were used to perform linear equali-

zation with a FIR filter (a first-order Volterra kernel) and nonlinear calibration with 

Volterra kernels of higher order. The Frisch–Waugh–Lovell (FWL) decomposition [32] 

was used to separate the linear and nonlinear parts of the Volterra model, and allow prun-

ing only on the nonlinear part. 

Figure 2 shows the Symbol Error Rate (SER) and Error Vector Magnitude (EVM) after 

equalization with nine linear coefficients (plus offset correction). The SER is 0.4%, and the 

EVM is 5.4%. Figure 3 shows the received constellation. At the four diagonal corners of 

the constellation, heavy distortions are evident. 
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Figure 2. EVM (top) and SER (bottom) after equalization with 9 linear coefficients and offset correc-

tion. Transmission errors are evident, and the EVM is too large. 

 

Figure 3. Received constellation after equalization. The QAM-64 constellation should form a square 

of 8 dots per dimension. Noise is limited (the central dots are small), but heavy distortion occurs at 

the diagonal corners, due to nonlinear effects. Such distortions produce transmission errors, as 

shown in Figure 2. 

Longer filters do not improve the EVM and SER, because the EVM errors are due to 

distortions and noise and cannot be corrected via linear filtering. A real communication 

system must have a sufficiently long linear adaptive filter to take into account the entire 

impulse response of the channel. These measurements only take into account the linear 
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frequency response of the amplifier, the pulse-shaping filter after the DAC and the anti-

aliasing filter before the ADC (the attenuators being close to ideal in the band of interest). 

Hence, nine FIR coefficients are in general not sufficient for equalization, but are sufficient 

in this case because the frequency response is relatively smooth. 

Figure 4 shows the SER and EVM after calibration. The linear kernel has a length of 

8, the quadratic kernel length 2, the cubic kernel length 4, the quartic kernel length 0, and 

the quintic kernel length 2. Distortions were in fact dominated by odd-order terms, and 

shorter kernels had an insufficient impact on post-calibration EVM. SER is now zero, and 

the EVM has fallen to 2.9%, almost twice lower. Figure 5 shows the constellation, which 

is more similar to the ideal one, though some residual distortion is still evident. 

 

Figure 4. EVM (top) and SER (bottom) after calibration with 72 coefficients. Symbol errors are no 

longer present, but model complexity significantly increased. 
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Figure 5. Received constellation after calibration. The shape of the constellation has significantly 

improved, though some nonlinear errors are still present at the four diagonal corners of the constel-

lation, where amplitude is maximum. 

Overall, complexity increases from 10 to 72 coefficients, hence pruning is required. 

The pruning algorithms described in Section 2 were exploited and compared, taking also 

into account their possible variants (OBD and WLASSO). Since DOMP is more efficient 

but analytically equivalent to OMP, the former was preferred. Iterative pruning [9,10] can 

be shown to be equivalent to OBS, but much less efficient computationally, and it has also 

been neglected. Model pruning was thus performed using the OBS, OBD, DOMP, LASSO 

and WLASSO techniques described previously. 

Figure 6 shows the impact of the five pruning techniques on accuracy. The x-axis is 

the number of nonlinear coefficients (62, because 10 coefficients are in the linear part), and 

the y-axis is the RMS error between the desired and calibrated response, which is related 

to EVM. 
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Figure 6. Accuracy vs. complexity for the five pruning techniques. OBS and DOMP outperform all 

the others. LASSO is the least efficient, whereas OBD is not bad for relatively large models. WLASSO 

is significantly better than LASSO, though still inefficient with respect to OBS and DOMP. 

DOMP and OBS taken together outperform the other techniques, which have larger 

errors for the same complexity, or higher complexity for the same accuracy. Hence, using 

both DOMP and OBS, the “technological possibility frontier” of the optimal pruned mod-

els for each complexity level was obtained. Of course, none of these techniques was opti-

mal, because the optimal would require trillions of regressions to test all the possible com-

binations of input variables. However, the combined use of DOMP and OBS allowed find-

ing the best approximation of the ideal trade-off. 

Figure 7 shows the OBS and DOMP techniques alone. The complete model of 62 co-

efficients can be pruned up to 12–15 nonlinear coefficients with limited loss in accuracy, 

from 0.133 to 0.14 of RMS error. OBS is more efficient in the center of the graph, whereas 

DOMP is more efficient for smaller but less accurate models. However, in the region 

where DOMP is more efficient, error increases rapidly, whereas the OBS-dominated re-

gion is flatter and closer in accuracy to the full model. 
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Figure 7. Zoom for OBS vs. DOMP, the two most promising pruning techniques. The two curves 

intersect each other, so that neither OBS nor DOMP are optimal by themselves. However, their com-

bined use allows finding the best approximation of the optimal complexity-accuracy trade-off. 

A very limited increase in the RMS error can be obtained reducing the number of 

nonlinear coefficients from 62 to less than 15, implying a pruning ratio better than 75%. 

Figure 8 shows the EVM and SER of the pruned model. EVM is 3.1%, up from 2.9% 

before pruning, and SER remains zero. This result is obtained with 12 nonlinear coeffi-

cients, so that the complete model has 22 coefficients, as 9 parameters are for the linear 

section, and 1 for offset removal. A linear equalizer in a real scenario may have much more 

than 9 coefficients, possibly also 40 or more, so that the increased complexity in adding 12 

nonlinear coefficients is more limited than it appears. 
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Figure 8. SER and EVM after pruning to 22 coefficients. The EVM increase is minimal, and SER is 

still zero, despite the fact that the nonlinear coefficients are decreased from 62 to just 12, close to an 

80% reduction in complexity. 

Figure 9 shows the constellation after pruning. It is remarkably similar to the constel-

lation in Figure 5, before pruning. Though there is some residual nonlinearity, SER is zero, 

as shown in Figure 8. 

 

Figure 9. Constellation after pruning with 22 coefficients. 
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A total of 14 waveforms for each of the two input files were acquired. The 14 wave-

forms were used with and without averaging (with a process gain of 11.5 dB). No differ-

ence between the averaged and non-averaged data were observed with equalization, cal-

ibration and pruning. Hence, most of EVM is due to residual linear and nonlinear ISI, and 

not to noise, otherwise EVM would have fallen somewhat with averaging. If EVM were 

due to noise, the averaging of synchronous waveforms would have improved EVM by as 

much as 11.5 dB, but the limited impact of averaging proves that nonlinear effects domi-

nate. 

Estimation is performed over about 3174 symbols, but convergence is achieved after 

about 1400 symbols, as shown in Figure 10, where EVM computed over the entire (train + 

test) dataset on the y-axis is shown as a function of the number of training symbols on the 

x-axis. This is achieved with the pruned model of 12 nonlinear parameters. The train da-

taset includes the first symbols, and the test dataset includes the remaining symbols. The 

training time includes the estimation of the linear and nonlinear parts of the model, for a 

total of 22 parameters. In a real implementation, the linear section would be longer to 

allow for channel equalization, so that convergence time would be somewhat larger. 

 

Figure 10. EVM vs. the number of symbols in the train dataset. Convergence is achieved after about 

1500 samples. EVM is computed over both the train and test datasets, where the train dataset in-

cludes the first symbols, used for training, and the test dataset includes the remaining symbols, used 

to compute the EVM but not to estimate the model coefficients. 

Finally, Figure 11 shows the EVM of the equalization (with 10 coefficients), calibra-

tion (with 72 coefficients) and pruned (with 22 coefficients) models as a function of the 

input power. Five acquisitions of the same waveforms were performed at the normalized 

power levels of 0 dB, −1 dB, −2 dB, −3 dB and −6 dB. Calibration allows halving the EVM 

with respect to mere equalization, and this effect is evident especially at larger input 

power levels. The pruned model is almost as accurate as the full model, though with 12 

instead of 62 additional model coefficients to estimate. 
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Figure 11. EVM of the equalization (black), calibration (red) and pruned (blue) models as a function 

of the input power level. Calibration allows reducing EVM by a factor 2, and pruning has limited 

impact on accuracy, though a very large one on model complexity (with a reduction from 62 to 12 

nonlinear model coefficients). 

5. Conclusions 

This paper focused on pruning techniques for model complexity reduction in 

Volterra models, with the goal of comparing such techniques on the experimental data 

produced by an IF amplifier fed by a QAM-64 waveform. 

Several pruning techniques were compared for the nonlinear calibration of a com-

mercial IF amplifier, with the goal of finding sparse models with high accuracy. The re-

sults show the effectiveness of the OBS and DOMP techniques for model pruning, while 

showing the inefficiency of LASSO, WLASSO and OBD. More in detail, the combined use 

of OBS and DOMP was proved to be optimal, meaning that the best of the two provides 

the optimal trade-off between accuracy and complexity: OBS is better for more complex 

models, those closer in performance to the full model, whereas DOMP is better for smaller 

models, when the error is however larger. The other three techniques produce less sparse 

or less accurate models, and they are shown to be dominated by either the OBS or DOMP 

techniques. Hence, they do not need to be considered when performing pruning, as using 

both OBS and DOMP provides the best model for a given accuracy or complexity, so that 

the best choice between these two techniques is “optimal”. More precisely, because all 

these algorithms are greedy, no optimal solution to the pruning problem can be found, 

but using OBS and DOMP allows finding the best solution among all the techniques that 

were compared. Hence, in addition to investigating the use of the OBS and OBD tech-

niques for Volterra model pruning, we conclude that the combined used of the OBS and 

DOMP techniques is preferable in approximating the optimal complexity–accuracy trade-

offs. 

Calibration was performed directly on the complex BF components to allow mini-

mizing linear and nonlinear ISI at the same time. Furthermore, the FWL theorem was used 

to separate the linear and nonlinear response of the Volterra kernels, and we performed 

pruning only on the nonlinear components whose response was relatively fixed. This al-

lowed selecting the relevant Volterra terms for accurate but low-complexity nonlinear cal-
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ibration without removing the linear terms, which were not pruned, to allow the equali-

zation of generic channel frequency responses in real applications. The FWL theorem al-

lowed concentrating the pruning process on the nonlinear part, and thus producing a sim-

ple nonlinear model without affecting the generalizability of the full model with respect 

to arbitrary linear channel responses. 

QAM-64 waveforms were used to test the amplifier. Mere equalization was not suf-

ficient to reduce SER to zero, because the amplifier was driven beyond its compression 

point and nonlinear distortions were significant. However, Volterra kernels were suffi-

cient to reduce SER to zero, though with a large increase in computational complexity. 

Pruning techniques were used, and the number of nonlinear coefficients for proper cali-

bration was reduced from 62 to 12. Hence, with 12 nonlinear coefficients, it is possible to 

decode the input QAM-64 waveforms with limited waveform error and no decision errors 

during decoding. 

Significant reductions in complexity (by a factor 4–6 in terms of number of nonlinear 

model parameters) were achieved with a negligible impact on model accuracy, improving 

the Error Vector Magnitude (EVM) by about 6dB with models containing about 20 param-

eters (including those for linear equalization). The 64-QAM constellations were used, and 

estimation takes fewer than 16.000 samples (about 3.200 symbols) to converge using a 

batch least squares estimator. 

The methodology described in this paper can be extended to any feedforward LIP 

model and is not limited to Volterra models. Hence, any model in this large class can be 

used to allow calibration in the complex domain, separation of linear and nonlinear sub-

models and the pruning of the nonlinear coefficients. For instance, Hammerstein and 

Functional-Link Artificial Neural Network (FLANN) models may be employed. The 

methodology can be used for any analog and RF component: RF amplifiers, such as power 

and low-noise amplifiers, active filters and mixers. The proposed analysis can be used 

whenever a nonlinear impairment can be modeled with a LIP feedforward model. Once 

the model is pruned, real-time VHDL implementations of the nonlinear calibration tech-

niques can be developed and tested. Pruning reduces the computational complexity and 

improves numerical stability and convergence time. These possibilities will be investi-

gated in future works. 
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List of Acronyms 

ADC Analog-to-Digital Converter 

BF Baseband Frequency 

DAC Digital-to-Analog Converter 

DOMP Doubly Orthogonal Matching Pursuit 

EVM Error Vector Magnitude 

FIR Finite Impulse Response 

FLANN Functional-Link Artificial Neural Network 

FPGA Field-Programmable Gate Array 

FWL Frisch–Waugh–Lovell 

IF Intermediate Frequency 

ISI Inter-Symbol Interference 

LASSO Least Absolute Shrinkage and Selection Operator 
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LIP Linear-In-the-Parameters 

LMS Least Mean Squares 

OBD Optimal Brain Damage 

OBS Optimal Brain Surgeon 

OMP Orthogonal Matching Pursuit 

QAM Quadrature Amplitude Modulation 

RF Radio Frequency 

RLS Recursive Least Squares 

RMS Root Mean Square 

SER Symbol Error Rate 

WLASSO Weighted Least Absolute Shrinkage and Selection Operator 
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