1,938 research outputs found

    Water vole (Arvicola amphibius) abundance in grassland habitats of Glasgow

    Get PDF
    Water vole (Arvicola amphibius) populations have undergone a serious decline throughout the UK, and yet a stronghold of these small mammals is found in the greater Easterhouse area of Glasgow. The water voles in this location are mostly fossorial, living a largely subterranean existence in grasslands, rather than the more typical semi-aquatic lifestyle in riparian habitats. In this study, we carried out capture-mark-recapture surveys on water voles at two sites: Cranhill Park and Tillycairn Drive. We made a total of 62 captures including retraps, and the resulting population estimates were 78 individuals (95% confidence interval 41-197) for Cranhill Park and 42 individuals (20-141) for Tillycairn Drive. From these figures we estimated a population density of water voles, which appeared to be higher than other reports from the UK. Despite the difficulties of sampling in urban environments that resulted in relatively low capture rates, our data suggest that the greater Easterhouse area of Glasgow holds water voles at relatively high population densities. These results will inform future conservation in the City of Glasgow and surrounding areas, as well as raise awareness of important water vole populations in urban environments

    Rotating black hole orbit functionals in the frequency domain

    Full text link
    In many astrophysical problems, it is important to understand the behavior of functions that come from rotating (Kerr) black hole orbits. It can be particularly useful to work with the frequency domain representation of those functions, in order to bring out their harmonic dependence upon the fundamental orbital frequencies of Kerr black holes. Although, as has recently been shown by W. Schmidt, such a frequency domain representation must exist, the coupled nature of a black hole orbit's rr and θ\theta motions makes it difficult to construct such a representation in practice. Combining Schmidt's description with a clever choice of timelike coordinate suggested by Y. Mino, we have developed a simple procedure that sidesteps this difficulty. One first Fourier expands all quantities using Mino's time coordinate λ\lambda. In particular, the observer's time tt is decomposed with λ\lambda. The frequency domain description is then built from the λ\lambda-Fourier expansion and the expansion of tt. We have found this procedure to be quite simple to implement, and to be applicable to a wide class of functionals. We test the procedure using a simple test function, and then apply it in a particularly interesting case, the Weyl curvature scalar ψ4\psi_4 used in black hole perturbation theory.Comment: 16 pages, 2 figures. Submitted to Phys Rev D. New version gives a vastly improved algorithm due to Drasco for computing the Fourier transforms. Drasco has been added as an author. Also fixed some references and exterminated a small herd of typos; final published versio

    Approximating the inspiral of test bodies into Kerr black holes

    Get PDF
    We present a new approximate method for constructing gravitational radiation driven inspirals of test-bodies orbiting Kerr black holes. Such orbits can be fully described by a semi-latus rectum pp, an eccentricity ee, and an inclination angle ι\iota; or, by an energy EE, an angular momentum component LzL_z, and a third constant QQ. Our scheme uses expressions that are exact (within an adiabatic approximation) for the rates of change (p˙\dot{p}, e˙\dot{e}, ι˙\dot{\iota}) as linear combinations of the fluxes (E˙\dot{E}, Lz˙\dot{L_z}, Q˙\dot{Q}), but uses quadrupole-order formulae for these fluxes. This scheme thus encodes the exact orbital dynamics, augmenting it with approximate radiation reaction. Comparing inspiral trajectories, we find that this approximation agrees well with numerical results for the special cases of eccentric equatorial and circular inclined orbits, far more accurate than corresponding weak-field formulae for (p˙\dot{p}, e˙\dot{e}, ι˙\dot{\iota}). We use this technique to study the inspiral of a test-body in inclined, eccentric Kerr orbits. Our results should be useful tools for constructing approximate waveforms that can be used to study data analysis problems for the future LISA gravitational-wave observatory, in lieu of waveforms from more rigorous techniques that are currently under development.Comment: 15 pages, 5 figures, submitted to PR

    Evolution of circular, non-equatorial orbits of Kerr black holes due to gravitational-wave emission: II. Inspiral trajectories and gravitational waveforms

    Get PDF
    The inspiral of a ``small'' (μ1100M\mu \sim 1-100 M_\odot) compact body into a ``large'' (M1057MM \sim 10^{5-7} M_\odot) black hole is a key source of gravitational radiation for the space-based gravitational-wave observatory LISA. The waves from such inspirals will probe the extreme strong-field nature of the Kerr metric. In this paper, I investigate the properties of a restricted family of such inspirals (the inspiral of circular, inclined orbits) with an eye toward understanding observable properties of the gravitational waves that they generate. Using results previously presented to calculate the effects of radiation reaction, I assemble the inspiral trajectories (assuming that radiation reacts adiabatically, so that over short timescales the trajectory is approximately geodesic) and calculate the wave generated as the compact body spirals in. I do this analysis for several black hole spins, sampling a range that should be indicative of what spins we will encounter in nature. The spin has a very strong impact on the waveform. In particular, when the hole rotates very rapidly, tidal coupling between the inspiraling body and the event horizon has a very strong influence on the inspiral time scale, which in turn has a big impact on the gravitational wave phasing. The gravitational waves themselves are very usefully described as ``multi-voice chirps'': the wave is a sum of ``voices'', each corresponding to a different harmonic of the fundamental orbital frequencies. Each voice has a rather simple phase evolution. Searching for extreme mass ratio inspirals voice-by-voice may be more effective than searching for the summed waveform all at once.Comment: 15 pages, 11 figures, accepted for publication in PRD. This version incorporates referee's comments, and is much less verbos

    The niche construction perspective: A critical appraisal

    Get PDF
    Niche construction refers to the activities of organisms that bring about changes in their environments, many of which are evolutionarily and ecologically consequential. Advocates of niche construction theory (NCT) believe that standard evolutionary theory fails to recognize the full importance of niche construction, and consequently propose a novel view of evolution, in which niche construction and its legacy over time (ecological inheritance) are described as evolutionary processes, equivalent in importance to natural selection. Here, we subject NCT to critical evaluation, in the form of a collaboration between one prominent advocate of NCT, and a team of skeptics. We discuss whether niche construction is an evolutionary process, whether NCT obscures or clarifies how natural selection leads to organismal adaptation, and whether niche construction and natural selection are of equivalent explanatory importance. We also consider whether the literature that promotes NCT overstates the significance of niche construction, whether it is internally coherent, and whether it accurately portrays standard evolutionary theory. Our disagreements reflect a wider dispute within evolutionary theory over whether the neo-Darwinian synthesis is in need of reformulation, as well as different usages of some key terms (e.g. evolutionary process)

    The thermodynamic evolution of the cosmological event horizon

    Full text link
    By manipulating the integral expression for the proper radius ReR_e of the cosmological event horizon (CEH) in a Friedmann-Robertson-Walker (FRW) universe, we obtain an analytical expression for the change \dd R_e in response to a uniform fluctuation \dd\rho in the average cosmic background density ρ\rho. We stipulate that the fluctuation arises within a vanishing interval of proper time, during which the CEH is approximately stationary, and evolves subsequently such that \dd\rho/\rho is constant. The respective variations 2\pi R_e \dd R_e and \dd E_e in the horizon entropy SeS_e and enclosed energy EeE_e should be therefore related through the cosmological Clausius relation. In that manner we find that the temperature TeT_e of the CEH at an arbitrary time in a flat FRW universe is Ee/SeE_e/S_e, which recovers asymptotically the usual static de Sitter temperature. Furthermore, it is proven that during radiation-dominance and in late times the CEH conforms to the fully dynamical First Law T_e \drv S_e = P\drv V_e - \drv E_e, where VeV_e is the enclosed volume and PP is the average cosmic pressure.Comment: 6 page

    Tracking Black Holes in Numerical Relativity

    Full text link
    This work addresses and solves the problem of generically tracking black hole event horizons in computational simulation of black hole interactions. Solutions of the hyperbolic eikonal equation, solved on a curved spacetime manifold containing black hole sources, are employed in development of a robust tracking method capable of continuously monitoring arbitrary changes of topology in the event horizon, as well as arbitrary numbers of gravitational sources. The method makes use of continuous families of level set viscosity solutions of the eikonal equation with identification of the black hole event horizon obtained by the signature feature of discontinuity formation in the eikonal's solution. The method is employed in the analysis of the event horizon for the asymmetric merger in a binary black hole system. In this first such three dimensional analysis, we establish both qualitative and quantitative physics for the asymmetric collision; including: 1. Bounds on the topology of the throat connecting the holes following merger, 2. Time of merger, and 3. Continuous accounting for the surface of section areas of the black hole sources.Comment: 14 pages, 16 figure

    Influence of nominal composition variation on phase evolution and creep life of Type 316H austenitic stainless steel components

    Get PDF
    AbstractThe present work aims to understand the influence of variation in chemical composition in the long term evolution of secondary phases. Three samples with nominal composition of Type 316H but different specific composition have been exposed to 505°C during 150, 145 and 300 kh. The percentage of ferrite and M23C6 carbide have been measured using EBSD and compared with Thermo-Calc predictions. In addition, thin foils were prepared and characterized to identify secondary phases in the samples. The discussion is focused on the influence of the secondary phases on creep deformation and failure
    corecore