170 research outputs found

    The Gut Microbiome in Neuromyelitis Optica.

    Get PDF
    Neuromyelitis optica (NMO) is a rare, disabling, sometimes fatal central nervous system inflammatory demyelinating disease that is associated with antibodies ("NMO IgG") that target the water channel protein aquaporin-4 (AQP4) expressed on astrocytes. There is considerable interest in identifying environmental triggers that may elicit production of NMO IgG by AQP4-reactive B cells. Although NMO is considered principally a humoral autoimmune disease, antibodies of NMO IgG are IgG1, a T-cell-dependent immunoglobulin subclass, indicating that AQP4-reactive T cells have a pivotal role in NMO pathogenesis. When AQP4-specific proliferative T cells were first identified in patients with NMO it was discovered that T cells recognizing the dominant AQP4 T-cell epitope exhibited a T helper 17 (Th17) phenotype and displayed cross-reactivity to a homologous peptide sequence within a protein of Clostridium perfringens, a commensal bacterium found in human gut flora. The initial analysis of gut microbiota in NMO demonstrated that, in comparison to healthy controls (HC) and patients with multiple sclerosis, the microbiome of NMO is distinct. Remarkably, C. perfringens was the second most significantly enriched taxon in NMO, and among bacteria identified at the species level, C. perfringens was the one most highly associated with NMO. Those discoveries, along with evidence that certain Clostridia in the gut can regulate the balance between regulatory T cells and Th17 cells, indicate that gut microbiota, and possibly C. perfringens itself, could participate in NMO pathogenesis. Collectively, the evidence linking microbiota to humoral and cellular immunity in NMO underscores the importance for further investigating this relationship

    Laquinimod, an up-and-coming immunomodulatory agent for treatment of multiple sclerosis

    Get PDF
    Laquinimod is a novel oral drug that is currently being evaluated for the treatment of relapsing-remitting multiple sclerosis (RRMS). Although the mode of action of laquinimod remains to be fully elucidated, current knowledge indicates that laquinimod exerts beneficial activities both on the peripheral immune system and within the central nervous system (CNS). The immunomodulatory properties have been deciphered primarily from studies of laquinimod in the animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Data indicate that laquinimod has a primary effect on innate immunity. Laquinimod modulates the function of various myeloid antigen presenting cell populations, which then downregulate proinflammatory T cell responses. Further, data also indicate that laquinimod acts directly on resident cells within the CNS to reduce demyelination and axonal damage. Results from clinical trials that tested laquinimod in RRMS demonstrated that it reduced relapse rate and the mean cumulative number of active lesions, and had a more marked reduction in disability progression than relapse rate. Laquinimod treatment was associated with an excellent safety and tolerability profile. These data indicate that laquinimod will offer a valuable new treatment option for RRMS patients

    Glatiramer acetate treatment does not modify the clinical course of (NZB × BXSB)F1 lupus murine model

    Get PDF
    Glatiramer acetate (GA, copolymer-1, Copaxone®), a therapy approved for treatment of multiple sclerosis (MS), prevents and reverses experimental autoimmune encephalomyelitis, the animal model of MS. In central nervous system autoimmune disease, GA is thought to act through modulation of antigen-presenting cells, such as monocytes, mediating an antigen-independent Th2 shift and development of FoxP3+ regulatory T cells. Recent reports indicate that GA may also be effective in models of other autoimmune diseases such as uveoretinitis, inflammatory bowel disease and graft rejection. To date, the potential effect of GA in lupus animal models has not been described. (NZB × BXSB)F1, male mice bearing Y-linked autoimmune acceleration , is a lupus-prone mouse model which is associated with a monocytosis accelerating disease progression. These mice were treated with GA before disease onset until death and both mortality rate and biological parameters were assessed to investigate whether GA may be beneficial in this spontaneous model of systemic lupus erythematosus. GA exerted no beneficial effect on the median survival after up to 7 months of treatment. Humoral and cellular parameters used as markers for lupus progression, such as anti-chromatin, anti-double-stranded DNA and anti-erythrocytes antibodies, hematocrit and monocytosis, were similarly unchanged. Our study demonstrates that GA has no significant effect on the progression of the (NZB × BXSB)F1 lupus-prone animal model. These results reinforce the hypothesis that GA may exert its beneficial effect in some specific autoimmune diseases onl
    • …
    corecore