55 research outputs found

    Aspartate 19 and Glutamate 121 Are Critical for Transport Function of the myo-Inositol/H+ symporter from Leishmania donovani

    Get PDF
    The protozoan flagellate Leishmania donovani has an active myo-inositol/proton symporter (MIT), which is driven by a proton gradient across the parasite membrane. We have used site-directed mutagenesis in combination with functional expression of transporter mutants in Xenopusoocytes and overexpression in Leishmania transfectants to investigate the significance of acidic transmembrane residues for proton relay and inositol transport. MIT has only three charged amino acids within predicted transmembrane domains. Two of these residues, Asp19 (TM1) and Glu121 (TM4), appeared to be critical for transport function of MIT, with a reduction of inositol transport to about 2% of wild-type activity when mutated to the uncharged amides D19N or E121Q and 20% (D19E) or 4% (E121D) of wild-type activity for the conservative mutations that retained the charge. Immunofluorescence microscopy of oocyte cryosections showed that MIT mutants were expressed on the oocyte surface at a similar level as MIT wild type, confirming that these mutations affect transport function and do not prevent trafficking of the transporter to the plasma membrane. The proton uncouplers carbonylcyanide-4-(trifluoromethoxy)phenylhydrazone and dinitrophenol inhibited inositol transport by 50–70% in the wild-type as well as in E121Q, despite its reduced transport activity. The mutant D19N, however, was stimulated about 4-fold by either protonophore and 2-fold by cyanide or increase of pH 7.5 to 8.5 but inhibited at pH 6.5. The conservative mutant D19E, in contrast, showed an inhibition profile similar to MIT wild type. We conclude that Asp19 and Glu121 are critical for myo-inositol transport, while the negatively charged carboxylate at Asp19 may be important for proton coupling of MIT

    Kinetics and Stoichiometry of a Proton/myo-Inositol Cotransporter

    Get PDF
    Voltage clamp recording was used to measure steady-state and presteady-state currents mediated by a myo-inositol transporter cloned from Leishmania donovani and expressed in Xenopus oocytes. Application of myo-inositol resulted in inward currents, which did not require external sodium and which were increased by increasing the extracellular proton concentration and by membrane hyperpolarization. Alkalinization of the extracellular space occurred concomitantly with myo-inositol influx. Correlation of membrane currents with radiolabeled myo-inositol flux revealed that one positive charge is translocated with each molecule of myo-inositol, consistent with cotransport of one proton. The transport concentration dependence on both species suggested ordered binding of a proton followed by a molecule of myo-inositol. In the absence of myo-inositol, a voltage-dependent capacitance was observed that correlated with the transporter expression level. This charge movement obeyed a Boltzmann function, which was used to estimate a turnover of 0.70 ± 0.06 s−1 at −60 mV. The pH and voltage dependence of the charge movements were simulated with a model involving alternating access of internal and external protons to sites within an occluded pore

    Functional expression of two glucose transporter isoforms from the parasitic protozoan Leishmania enriettii

    Get PDF
    The parasitic protozoan Leishmania enriettii contains a family of tandemly repeated genes, designated Pro-1, that encode proteins with significant sequence similarity to mammalian facilitative glucose transporters. Pro-1 mRNAs are expressed almost exclusively in the promastigote or insect stage of the parasite life cycle. The Pro-1 tandem repeat encodes two isoforms of the putative transporter, iso-1 and iso-2, which have identical predicted amino acid sequences except for their NH2-terminal hydrophilic domains. We have now expressed both iso-1 and iso-2 by microinjecting their RNAs into Xenopus oocytes and assaying these oocytes for transport of various radiolabeled ligands. Both iso-1 and iso-2 transport [3H]2-deoxy-D-glucose, confirming that each protein is a bona fide glucose transporter. Each isoform also transports fructose and, to a much lesser degree, mannose. Compounds which inhibit 2-deoxy-D-glucose transport in L. enriettii promastigotes also inhibit transport in the microinjected oocytes expressing each isoform, indicating that the substrate specificities and pharmacological properties of each isoform are similar to those measured for 2-deoxy-D-glucose transport in intact parasites. The Km for transport of 2-deoxyglucose in oocytes expressing iso-1 is similar to that for oocytes expressing iso-2. These results reveal that both transporter isoforms have closely related functional properties and that the difference in their structures may serve some other purpose such as differential subcellular localization

    Equilibrative Nucleoside Transporter Family Members from Leishmania donovani Are Electrogenic Proton Symporters

    Get PDF
    Leishmania donovani express two members of the equilibrative nucleoside transporter family; LdNT1 encoded by two closely related and linked genes, LdNT1.1 and LdNT1.2, that transport adenosine and pyrimidine nucleosides and LdNT2 that transports inosine and guanosine exclusively. LdNT1.1, LdNT1.2, and LdNT2 have been expressed in Xenopus laevis oocytes and found to be electrogenic in the presence of nucleoside ligands for which they mediate transport. Further analysis revealed that ligand uptake and transport currents through LdNT1-type transporters are proton-dependent. In addition to the flux of protons that is coupled to the transport reaction, LdNT1 transporters mediate a variable constitutive proton conductance that is blocked by substrates and dipyridamole. Surprisingly, LdNT1.1 and LdNT1.2 exhibit different electrogenic properties, despite their close sequence homology. This electrophysiological study provides the first demonstration that members of the equilibrative nucleoside transporter family can be electrogenic and establishes that these three permeases, unlike their mammalian counterparts, are probably concentrative rather than facilitative transporters

    KHARON Is an essential cytoskeletal protein involved in the trafficking of flagellar membrane proteins and cell division in African trypanosomes

    Get PDF
    African trypanosomes and related kinetoplastid parasites selectively traffic specific membrane proteins to the flagellar membrane, but the mechanisms for this trafficking are poorly understood. We show here that KHARON, a protein originally identified in Leishmania parasites, interacts with a putative trypanosome calcium channel and is required for its targeting to the flagellar membrane. KHARON is located at the base of the flagellar axoneme, where it likely mediates targeting of flagellar membrane proteins, but is also on the subpellicular microtubules and the mitotic spindle. Hence, KHARON is probably a multifunctional protein that associates with several components of the trypanosome cytoskeleton. RNA interference-mediated knockdown of KHARON mRNA results in failure of the calcium channel to enter the flagellar membrane, detachment of the flagellum from the cell body, and disruption of mitotic spindles. Furthermore, knockdown of KHARON mRNA induces a lethal failure of cytokinesis in both bloodstream (mammalian host) and procyclic (insect vector) life cycle stages, and KHARON is thus critical for parasite viability

    Coxiella burnetii and Leishmania Mexicana Residing Within Similar Parasitophorous Vacuoles Elicit Disparate Host Responses

    Get PDF
    Coxiella burnetii is a bacterium that thrives in an acidic parasitophorous vacuole (PV) derived from lysosomes. Leishmania mexicana, a eukaryote, has also independently evolved to live in a morphologically similar PV. As Coxiella and Leishmania are highly divergent organisms that cause different diseases, we reasoned that their respective infections would likely elicit distinct host responses despite producing phenotypically similar parasite-containing vacuoles. The objective of this study was to investigate, at the molecular level, the macrophage response to each pathogen. Infection of THP-1 (human monocyte/macrophage) cells with Coxiella and Leishmania elicited disparate host responses. At 5 days post-infection, when compared to uninfected cells, 1057 genes were differentially expressed (746 genes up-regulated and 311 genes downregulated) in C. burnetii infected cells, whereas 698 genes (534 genes up-regulated and 164 genes down-regulated) were differentially expressed in L. mexicana infected cells. Interestingly, of the 1755 differentially expressed genes identified in this study, only 126 genes (∼7%) are common to both infections. We also discovered that 1090 genes produced mRNA isoforms at significantly different levels under the two infection conditions, suggesting that alternate proteins encoded by the same gene might have important roles in host response to each infection. Additionally, we detected 257 micro RNAs (miRNAs) that were expressed in THP-1 cells, and identified miRNAs that were specifically expressed during Coxiella or Leishmania infections. Collectively, this study identified host mRNAs and miRNAs that were influenced by Coxiella and/or Leishmania infections, and our data indicate that although their PVs are morphologically similar, Coxiella and Leishmania have evolved different strategies that perturb distinct host processes to create and thrive within their respective intracellular niches

    Aquaglyceroporin-null trypanosomes display glycerol transport defects and respiratory-inhibitor sensitivity

    Get PDF
    Aquaglyceroporins (AQPs) transport water and glycerol and play important roles in drug-uptake in pathogenic trypanosomatids. For example, AQP2 in the human-infectious African trypanosome, Trypanosoma brucei gambiense, is responsible for melarsoprol and pentamidine-uptake, and melarsoprol treatment-failure has been found to be due to AQP2-defects in these parasites. To further probe the roles of these transporters, we assembled a T. b. brucei strain lacking all three AQP-genes. Triple-null aqp1-2-3 T. b. brucei displayed only a very moderate growth defect in vitro, established infections in mice and recovered effectively from hypotonic-shock. The aqp1-2-3 trypanosomes did, however, display glycerol uptake and efflux defects. They failed to accumulate glycerol or to utilise glycerol as a carbon-source and displayed increased sensitivity to salicylhydroxamic acid (SHAM), octyl gallate or propyl gallate; these inhibitors of trypanosome alternative oxidase (TAO) can increase intracellular glycerol to toxic levels. Notably, disruption of AQP2 alone generated cells with glycerol transport defects. Consistent with these findings, AQP2-defective, melarsoprol-resistant clinical isolates were sensitive to the TAO inhibitors, SHAM, propyl gallate and ascofuranone, relative to melarsoprol-sensitive reference strains. We conclude that African trypanosome AQPs are dispensable for viability and osmoregulation but they make important contributions to drug-uptake, glycerol-transport and respiratory-inhibitor sensitivity. We also discuss how the AQP-dependent inverse sensitivity to melarsoprol and respiratory inhibitors described here might be exploited
    • …
    corecore