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Kinetics and Stoichiometry of a Proton/myo-Inositol Cotransporter*

(Received for publication, February 12, 1996, and in revised form, April 5, 1996)

Elizabeth M. Klamo‡, Mark E. Drew§, Scott M. Landfear§, and Michael P. Kavanaugh‡¶

From the ‡Vollum Institute and §Department of Molecular Microbiology and Immunology, Oregon Health Sciences
University, Portland, Oregon 97201

Voltage clamp recording was used to measure steady-
state and presteady-state currents mediated by a myo-
inositol transporter cloned from Leishmania donovani
and expressed in Xenopus oocytes. Application of myo-
inositol resulted in inward currents, which did not re-
quire external sodium and which were increased by in-
creasing the extracellular proton concentration and by
membrane hyperpolarization. Alkalinization of the ex-
tracellular space occurred concomitantly with myo-ino-
sitol influx. Correlation of membrane currents with ra-
diolabeled myo-inositol flux revealed that one positive
charge is translocated with each molecule of myo-inosi-
tol, consistent with cotransport of one proton. The
transport concentration dependence on both species
suggested ordered binding of a proton followed by a
molecule of myo-inositol. In the absence of myo-inositol,
a voltage-dependent capacitance was observed that cor-
related with the transporter expression level. This
charge movement obeyed a Boltzmann function, which
was used to estimate a turnover of 0.70 6 0.06 s21 at 260
mV. The pH and voltage dependence of the charge move-
ments were simulated with a model involving alternat-
ing access of internal and external protons to sites
within an occluded pore.

Secondary transporters drive concentrative solute flux by
utilizing the energy stored in the electrochemical gradients of
cotransported ions (Crane, 1977). A central question in trans-
port biophysics concerns the mechanism by which cotrans-
ported ions and substrate interact with the transporter to
achieve this coupling. While secondary transporters of lower
organisms most commonly utilize a transmembrane proton
gradient, the evolution and diversification of transport systems
in higher organisms has led to utilization of additional ion
gradients including those for Na1, K1, and Cl2. Some trans-
porters are capable of utilizing multiple ion gradients, suggest-
ing the possibility of common functional mechanisms that may
be conserved among different transporter types. For example,
nominally Na1-dependent glucose transport can be energized
by a proton gradient in the absence of external Na1 (Hoshi et
al., 1986; Hirayama et al., 1994). Similarly, the melibiose
transporter from Escherichia coli is capable of utilizing Na1 or
H1 (Niiya et al., 1982). In addition, the amino acid transporter,
CAT-1, is capable of either Na1-dependent or Na1-independent
facilitated uptake, depending on the charge on the amino acid

transported (Christensen et al., 1969; Wang et al., 1991).
Statistical analysis of predicted amino acid sequences has

been used to identify five major gene families within an ancient
superfamily of proton-coupled and facilitated transporters,
which possess a structural motif predicted to contain 12 trans-
membrane spanning regions (Marger and Saier, 1993). Re-
cently a genomic DNA clone (D1) related to a family of genes
encoding facilitated and proton-coupled hexose transporters
was cloned from the parasitic protozoan Leishmania donovani
and demonstrated to encode a transporter for myo-inositol
(Drew et al., 1995). The present work uses a combination of
isotope flux, voltage-clamp current recording, and pHmeasure-
ments in order to characterize the kinetics and stoichiometry of
myo-inositol transport. Protons are shown to be selectively
co-transported with myo-inositol with a 1:1 stoichiometry. Ev-
idence is presented for ordered binding of a proton followed by
myo-inositol binding and translocation, and charge movements
are observed in the absence of myo-inositol that are suggested
to reflect this proton binding.

MATERIALS AND METHODS

Transporter Expression and Electrophysiology—Capped cRNA was
transcribed from cDNA encoding the L. donovani myo-inositol trans-
porter, MIT1 (Drew et al., 1995). 50 ng was then microinjected into stage
V-VI Xenopus oocytes, and transport assays were performed 2–5 days
later. The frog Ringer’s solution used for recording contained 96 mM

NaCl, 2 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, and was buffered with 5
mM Na-HEPES (pH 7.5), MES-HEPES (pH 6.0–7.0), or HEPES-Tris
(pH 8.0–8.5). In sodium substitution experiments, equimolar choline
was substituted for sodium. Recording microelectrodes contained 3 M

KCl and had resistances between 0.2 and 1.0 megohm. Two-electrode
voltage clamp recordings were performed at 20 °C using a GeneClamp
500 amplifier interfaced to a computer by a Digidata 1200 A/D con-
trolled by pCLAMP software 6.0 (Axon Instruments). Current signals
were digitized at 2–5 kHz and low pass-filtered at 1 kHz. Unless
indicated, steady-state currents were normalized to the current elicited
by application of 1 mM myo-inositol at pH 7.5 in the same cells. The
kinetic parameters Km

s and Imax
s for either protons or for myo-inositol

were obtained by least squares fitting the substrate induced current, I,
to the Michaelis-Menten equation: I 5 Imax[S]/(Km1[S]), where S rep-
resents either myo-inositol or protons. Charge movements associated
with the transient currents were determined from the product of a fitted
exponential relaxation time constant and the corresponding peak cur-
rent amplitude. The charge was plotted as a function of voltage and
fitted by least squares to a Boltzmann equation: Q 5 Qtot/1 1
exp(eozd(Vm 2 V0.5)/kT) 1 Qoffset, where Qtot is the total charge move-
ment, Vm is the membrane potential, V0.5 is the potential at which half
the charge has moved, Qoffset is the offset that depended on the holding
potential, zd is the product of the valence of the charge and the fraction
of the field through which it moves, eo is the elementary charge, k is the
Boltzmann constant, and T is the absolute temperature. Numerical
simulations of kinetic models were generated using SCoP software
(Simulation Resources Inc.).
myo-[3H]Inositol Flux—Oocytes expressing MIT were voltage-

clamped at 280 mV, and currents were recorded during a 200-s super-
fusion with 100 mM myo-[3H]inositol (1 mCi/ml, DuPont NEN). After a

* This work was supported by National Institutes of Health Grant
GM400879 (to M. K.) and Grant AI25920 and Research Career Devel-
opment Award AI01162 (to S. L.). The costs of publication of this article
were defrayed in part by the payment of page charges. This article must
therefore be hereby marked “advertisement” in accordance with 18
U.S.C. Section 1734 solely to indicate this fact.
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20-s wash, oocytes were transferred to scintillation vials, solubilized
with 1% SDS, and counted to determine the influx of radiolabeled
myo-inositol. The total charge translocated during the myo-[3H]inositol
superfusion was calculated from the current-time integral and corre-
lated with the radiolabel flux measured for each oocyte.
pH Measurements—Measurements of extracellular proton concen-

trations were made with a pH-sensitive electrode (NMPH3, World
Precision Instruments) interfaced to a MacLab A/D converter (AD In-
struments). The electrode response was calibrated by superfusion with
standard solutions of known pH. Oocyte responses were recorded in
sodium-free Ringer’s with 1 mM HEPES-Tris, pH 7.5. The pH electrode
was positioned immediately adjacent to the oocyte membrane, the bath
flow was stopped, and transport was activated in the presence of myo-
inositol by a voltage jump from 120 to 280 mV while simultaneously
recording pH.

RESULTS

Ionic Dependence and Transport Stoichiometry—Inward cur-
rents were elicited upon application of myo-inositol to voltage-
clamped oocytes 2–5 days after injection of the MIT cRNA.
These inward currents were independent of external Na1, as
substitution of equimolar choline had no effect on the current
amplitudes (n 5 3; Fig. 1). The effect of membrane potential on
the steady-state currents induced by myo-inositol was exam-
ined by comparing the currents recorded at the end of a 500-ms
command pulse to potentials between 2150 and 160 mV in the
presence and absence of myo-inositol (Fig. 1C). The difference
between these currents revealed that the inward current in-
duced by myo-inositol was increased at more negative poten-
tials (Fig. 1D). The myo-inositol-induced current approached
zero but did not reverse polarity at potentials up to 160 mV
(Fig. 1D).
Since myo-inositol is uncharged at physiological pH, this

result suggested that the transporter may utilize the electro-
chemical gradient of an ionic species other than sodium to drive
myo-inositol transport. Compounds that dissipate the proton
gradient such as carbonyl cyanide p-trifluoromethoxyphenyl-
hydrazone inhibit MIT-mediated uptake of myo-inositol, sug-

gesting that protons may be a co-substrate of the transporter
(Drew et al., 1995). To directly test this hypothesis, a pH-
sensitive electrode positioned next to the oocyte membrane was
used to monitor changes in the extracellular proton concentra-
tion that accompanied myo-inositol influx under voltage-clamp
conditions. Measurements were made during voltage jumps
from 120 mV to 280 mV, a membrane potential change ex-
pected to increase transport approximately 3-fold (Fig. 1). Con-
sistent with the hypothesis of proton symport, hyperpolarizing
voltage jumps in the presence of myo-inositol resulted in an
alkalinization of the extracellular space (Fig. 2A). This alkalin-
ization did not occur when the oocyte membrane was stepped
from 120 to 280 mV in solution without myo-inositol (Fig. 2A;
n 5 4) or in uninjected oocytes (n 5 4) under either of the
conditions (Fig. 2B). In 4 oocytes expressing MIT, the mean pH
change caused by activation of myo-inositol influx was 0.045 6
0.001.
To determine the stoichiometry of proton/myo-inositol sym-

port, oocytes were voltage-clamped at 280 mV and the current
induced during a 200-s superfusion of 100 mM myo-[3H]inositol
was recorded. After a brief washout, oocytes were removed and
radioactivity counted to measure the amount of myo-inositol
taken up. The total charge translocated during the myo-[3H]
inositol application was calculated from the current-time inte-
gral, and the quantity of charge transferred was correlated
with the radiolabel flux in six oocytes (Fig. 3). Linear regres-
sion analysis yielded a slope of 96,648 coulomb/mol of myo-
inositol, indicating that 1.002 elementary charges are translo-
cated per molecule of myo-inositol (96,648/Faraday’s constant;
r 5 0.94). Because myo-inositol is uncharged at the pH used in
these measurements, the results indicate a transport stoichi-
ometry of 1 proton:1 molecule of myo-inositol.
Steady-state Kinetics—The influences ofmyo-inositol concen-

tration, pH, and membrane potential on the steady-state trans-
port rate were studied by systematically varying each param-

FIG. 1. A, membrane currents associated withmyo-inositol uptake are shown for a representative oocyte expressing MIT voltage-clamped at 260
mV and superfused with 1 mM myo-inositol for the duration indicated by the bar. The magnitude of the myo-inositol induced inward current was
unchanged in the absence of Na1. B, no currents were induced by applying 1 mMmyo-inositol to uninjected oocytes. C, current-voltage relationships
for an oocyte expressing MIT in Ringer’s solution with (filled symbols) and without (open symbols) 1 mM myo-inositol. Subtraction of the latter
current from the former reveals the voltage dependence of the steady-state myo-inositol transport current (D).
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eter. At any given pH between 6.5 and 8.5, application of
varying concentrations of myo-inositol resulted in current re-
sponses that were well fitted by the Michaelis-Menten equation
(Fig. 4). The apparent affinity for myo-inositol increased with
increasing [H1]out; the Km

m-inos ranged from 95 mM at pH 5 6.5
to 1.4 mM at pH 5 8.5 (Vm 5 230 mV). There was no significant
change in the Imax

m-inos as a function of pH over this range (Fig.
4A). At a given pH, the transporter displayed an increased
apparent affinity for myo-inositol at more negative potentials
(Fig. 4B). The Km

m-inos appeared to approach a limiting value
with membrane hyperpolarization, and this saturation oc-
curred at less negative potentials as the proton concentration
was raised (Fig. 4B), suggesting the possibility of a voltage-de-
pendent transporter interaction with protons (see below).
The proton concentration dependence of the steady-state

transport current was also well fitted by the Michaelis-Menten
equation (Fig. 5A). Analogous to the effect of increasing [H1]out
on the apparent myo-inositol affinity, increasing [myo-inosi-
tol]out increased the apparent affinity for protons. The Km

H1

ranged from 490 nM at 10 mM myo-inositol to 4 nM at 1 mM

myo-inositol (Vm 5 230 mV). In contrast to the lack of effect of
[H1]out on Imax

m-inos, Imax
H1

was strongly dependent on [myo-inosi-
tol]out (Fig. 5C). The Imax

H1

increased at negative membrane
potentials, but it became markedly less voltage-dependent with
decreasing myo-inositol concentration, suggesting that with

limiting concentrations of myo-inositol, the rate-limiting step
in transport becomes voltage-independent (Fig. 5C).
Presteady-state Currents—In the absence of myo-inositol, oo-

cytes injected with MIT cRNA displayed current relaxations
following voltage jumps that persisted for tens of milliseconds
after the time required to charge the membrane capacitance
(Figs. 6A and 7A). These relaxations were not seen in unin-
jected oocytes (Fig. 6A), and they were unaffected by removal of
Na1 from the bathing solution (data not shown). These tran-
sient currents decayed completely by the end of a 500-ms volt-
age pulse, and the mean currents at the end of the pulse
(corresponding to the steady-state leak) were not significantly
different in oocytes expressing the transporter and in unin-
jected oocytes. In addition, no changes in pH were detected
following voltage jumps in the absence of myo-inositol (Fig. 2),
suggesting that the transporter does not mediate a significant
uncoupled proton flux. The transient currents decayed expo-
nentially with two time constants over a range of voltages from
2180 to 190 mV. The faster component represented 45–75% of
the charge movement and decayed with time constants ranging
from 5 to 10 ms, while the slower component decayed with time
constants between 40 and 80 ms. During voltage jumps in the
presence of myo-inositol, the slow component of the transient
current was selectively attenuated (Fig. 6C). The total charge
movement during a voltage jump in the absence ofmyo-inositol
was calculated for a range of test potentials. The charge move-
ment at the onset of the voltage pulse (Qon) was found to be
equal and opposite to the charge movement at the return to the
prepulse potential (Qoff), suggesting that the transient currents
were capacitive in nature (Fig. 7, inset). The increased capaci-
tance correlated with transporter expression levels as meas-
ured by myo-inositol-induced currents (r 5 0.91; Fig. 7B). The

FIG. 2. myo-Inositol influx is associated with alkalinization of
the extracellular space. Traces show the response measured by a pH
electrode placed adjacent to a representative oocyte expressing MIT (A)
or an uninjected oocyte (B) when the membrane potential is stepped
from 120 mV to 280mV in control solution or in the presence of 1 mM

myo-inositol as indicated. Similar results were seen in 4 oocytes.

FIG. 3. Charge coupling stoichiometry determined by correla-
tion of current-time integrals and [3H]-myo-inositol uptake in
six oocytes expressing different quantities of MIT. The line rep-
resents least squares linear regression fit of the data points. The slope
of the fit is 96,648 C/mol (1.002 F), suggesting that 1 elementary charge
is translocated per myo-inositol transport cycle.

FIG. 4. Influence of pH on the kinetic parameters Km
m-inos and

Imax
m-inos. A, myo-inositol concentration-response curves at fixed pH val-
ues between 6.5 and 8.5; curves shown are least squares fit of the data
(mean 6 S.E. n 5 3–4) to the Michaelis-Menten equation with Km
values 95 mM (pH 6.5), 334 mM (pH 7.5), and 1.4 mM (pH 8.5). Currents
were normalized to the Imax

m-inos at pH 7.5 in the same cells (membrane
potential 5 230 mV). Varying the pH did not result in a statistically
significant change in Imax. B, effect of membrane potential on the Km for
myo-inositol at different proton concentrations.

Proton/myo-Inositol Transporter 14939
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charge movements depended on the membrane potential in a
manner well described by a Boltzmann function. The total
charge movement (Qtot) in 5 oocytes expressing the transporter
was 20.6 6 1.2 nC. The voltage midpoint of the charge move-
ment (V0.5) was 2110.0 6 3.4 mV, and the slope factor of the
function was 61.5 6 3.7 mV, corresponding to an effective
valence for the charge movement of 0.41.
Analysis of the charge movements in the absence of myo-

inositol allows an estimation of the number of transporters, N,
from the total charge movment (Qtot) since Qtot 5 Neozd, where
eo is the elementary charge and z is the valence of the charge
moving through a fraction d of the electric field (Mager et al.,
1993; Wadiche et al., 1995). The average number of transport-
ers per oocyte was 3.20 6 0.36 3 1011 (n 5 5). Assuming a

membrane surface area of 2.85 3 107 mm22 (Wadiche et al.,
1995), this corresponds to a transporter density of 11,228
mm22. The transporter turnover rate can be directly calculated
from the transporter density and the steady-state current
measurements, since one elementary charge is translocated per
molecule of myo-inositol (Fig. 3). The turnover rate in eo s

21 is
given by Iss/(Qtot/zd), where Iss is the steady-state current re-
sulting from the application of 1 mM myo-inositol. This turn-
over rate was voltage-dependent, ranging from 0.49 6 0.04 s21

at 230 mV to 1.37 6 0.13 s21 at 2150 mV.
Origin of Charge Movements—The transient currents could

reflect ion binding to the transporter at sites within the electric
field and/or charge movements associated with conformational
transitions of the protein. The effect of membrane potential on
the apparent affinity for protons suggests that the binding of
the proton to a site on the transporter may be voltage-depend-
ent (Figs. 4B and 5B). This voltage dependence might arise in
several ways. First, an “ion well” effect could occur due to the
proton traversing a fraction d of the membrane field to reach its
binding site (Läuger, 1991). In this case, changes in membrane
potential would result in a change in the equilibrium dissocia-
tion constant (Woodhull, 1973). If this occurred, then the volt-
age midpoint (V0.5) of the Boltzmann distribution should shift
as a function of external proton concentration according to the
equation: [H1]1/[H

1]2 5 exp[dF(V1 2 V2)/RT], where [H
1]1 and

[H1]2 are the proton concentrations that give the correspond-
ing V0.5 values V1 and V2 (Wadiche et al., 1995). Accordingly,
using a value for d 5 0.41 (obtained from the slope of the
Boltzmann fit of the charge movements at pH 7.5), a 10-fold
decrease in [H1]out should result in a 2140 mV shift in V0.5 of
the charge movement (Fig. 8). To test this prediction, charge
movements were measured at pH 8.5 and compared to the
charge movements measured at pH 7.5 in the same oocytes.
The observed shift in the V0.5 was only 216 mV (Fig. 8),
suggesting that the charge movements cannot be solely ac-
counted for by external proton binding to a site in the electric
field. Because poor control of intracellular pH precluded a
direct test of varying [H1]i, the effect on the external pH
dependence of the charge movements of ion binding at a cyto-
plasmic site were tested using a computer simulation. With a
conventional ordered kinetic scheme, a cytoplasmic proton
binding site within the electrical field was required to ade-
quately describe the shift of the voltage midpoint of the charge
movements with changing external pH (Fig. 8).
An alternative explanation for the origin of the transient

currents in the absence of myo-inositol is a voltage- and pH-
dependent “empty state” transition of the protein. Voltage-de-
pendent state transitions have been postulated to occur in
alternating access schemes for glucose (Parent et al., 1992) and
arginine transporters (Kavanaugh, 1993). Because global con-
formational transitions of proteins are likely to be more tem-
perature-dependent than diffusion processes, the temperature
dependence of the transient current kinetics was examined.
Reducing the temperature from 21 °C to 10 °C resulted in
greater than 85% reduction in the steady-state transport rate
(Fig. 9). In contrast, the charge movement kinetics were signif-
icantly less affected; the relative amplitude of the slow compo-
nent of the transient current decay was increased without
slowing the time constants (tfast 5 8.0 6 0.3 ms and 8.3 6 0.3
ms and tslow 5 53.7 6 6.0 ms and 31.4 6 5.1 ms for a step from
230 to 2150 mV at 21 °C and 10 °C, respectively; Fig. 9). These
results imply that the rate-limiting step in the transport cycle
is highly temperature-dependent (q10 . 5), and that the charge
movements are not likely to reflect this slow (;1 s21) rate-
limiting step because of their faster kinetics and lesser tem-
perature dependence.

FIG. 5. myo-Inositol influence on the kinetic parameters Km
H1

and Imax
H1

. A, proton concentration dependence of currents at myo-
inositol concentrations between 10 mM and 1000 mM obtained at 230
mV; curves shown are least squares fit of the data (mean 6 S.E.; n 5
3–4) to the Michaelis-Menten equation with Km values of 490 nM at 10
mM, 32 nM at 100 mM, and 4 nM at 1000 mM myo-inositol. Currents were
normalized to the maximal response obtained in the presence of 1 mM

myo-inositol. B, effect of membrane potential on the apparent affinity
for protons (Km

H1
) at indicated concentrations ofmyo-inositol. C, effect of

membrane potential on Imax
H1

. Data were normalized as in A. Data points
represent the mean 6 S.E. of the Imax

H1
values obtained from Michaelis-

Menten fits of concentration-response data in individual oocytes (n 5
3–4).
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DISCUSSION

Measurement of flux mediated by a cloned L. donovani
myo-inositol transporter revealed that a steady-state flow of
electrical current occurs during transport such that one
charge is translocated with each molecule of myo-inositol.
Transport of myo-inositol was sodium-independent and was
accompanied by an alkalinization of the extracellular space,
consistent with coupled proton/myo-inositol symport. The
transport kinetic parameters Km and Imax revealed an inter-
action between myo-inositol and protons, which was in turn

influenced by the membrane potential. The apparent affinity
for myo-inositol increased with increasing [H1]out, and the
apparent affinity for protons increased with increasing [myo-
inositol]out. Membrane hyperpolarization caused an in-
creased apparent affinity for myo-inositol, an effect that sat-
urated at very negative potentials (Fig. 4B). The voltage
dependence of Km

m-inos appears to reflect the voltage depend-
ence of proton binding since this saturation occurred at less
negative potentials as the external proton concentration was
raised. Consistent with this possibility, the apparent affinity

FIG. 6. Currents elicited by voltage jumps in the presence and absence of myo-inositol. A, an MIT-expressing oocyte displays slow
current relaxations not seen in uninjected or water-injected control oocytes in response to voltage jumps performed in Ringer’s solution (A) or 1 mM

myo-inositol (B). Membrane voltage was stepped from a holding potential of 230 mV to a range of potentials between 2150 mV and 150 mV in
40-mV increments. The pH of both solutions was 7.5. C, in the absence of myo-inositol, the current decayed exponentially with two time constants
(fits shown represent tfast 5 7.3 ms and tslow 5 57.6 ms). In the presence of 1 mM myo-inositol, the relaxation decayed with a single time constant
(tfast 5 7.6 ms). Currents associated with the linear membrane capacitance during the first 3 ms following the voltage jump were deleted for clarity.

FIG. 7. A, current relaxations in a representative oocyte expressing MIT following voltage jumps to potentials between 210 mV and 70 mV in
20-mV increments from a holding potential of 230 mV. Steady-state leak current has been subtracted. Inset shows the correlation of charge
movement obtained from time integration of transient currents following command pulses to a range of potentials between 2150 mV and 70 mV
with charge movement following return to the holding potential (line shows least-squares linear regression; slope 5 1.1). B, charge movements
during a voltage jump from 230 mV to 290 mV were correlated (r 5 0.91) with transporter expression level as determined by steady-state currents
induced by 1 mM myo-inositol superfusion (n 5 15).

Proton/myo-Inositol Transporter 14941
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for protons was increased by hyperpolarization, and this ef-
fect did not saturate at negative membrane potentials even
with high concentrations of myo-inositol (Fig. 5). The Imax

H1

increased at negative membrane potentials, but it became
markedly less voltage-dependent with decreasing myo-inosi-
tol concentration. This result suggests that with very low
concentrations of myo-inositol, the rate-limiting step in
transport becomes voltage-independent. This voltage-inde-
pendent step may be the binding of myo-inositol to the
transporter.
Information about binding order of substrates for well de-

fined cotransport processes can be obtained from analysis of
steady-state kinetic parameters (see Stein (1990)). As shown
in Fig. 4, Km

m-inos is increased by reducing [H1]out, while Imax
m-inos

is unaffected. Therefore, limiting [H1] can be overcome by
increasing [myo-inositol] to reach the same maximal rate.

This is in contrast to the effect of limiting [myo-inositol], in
which Km

H1

is increased while Imax
H1

is reduced (Fig. 5). These
data are consistent with a sequential ordered binding mech-
anism (Jauch and Läuger, 1986) with one proton binding to
the transporter first, followed by a molecule of myo-inositol.
This behavior differs from that of a H1/hexose transporter,
STP1, cloned from Arabidopsis thaliana (Sauer et al., 1990),
which is reported to mediate H1/hexose flux via a random
binding consecutive transport mechanism (Boorer et al.,
1994).
Following voltage jumps, presteady-state charge movements

were evident, which were well resolved from membrane capac-
itance currents and which correlated in magnitude with trans-
porter expression levels (Fig. 7B). The charge movements as-
sociated with the myo-inositol transporter depended on the
membrane potential in a manner that could be described by a
Boltzmann function. Qualitatively similar currents reflecting
reversible charge movements have been observed in a number
of transporters (Parent et al., 1992; Mager et al., 1993; Boorer
et al., 1994; Wadiche et al., 1995). Estimation of transporter
numbers can be obtained from the Boltzmann parameters of
the charge movements (Mager et al. 1993). Using this ap-
proach, we obtained estimates of myo-inositol transporter den-
sities in the oocyte membrane of approximately 11,000 mm22.
The turnover rate inferred from these estimates is on the order
of 1 s21. The temperature sensitivity of the transport rate was
much greater than were the transient current relaxation time
constants (Fig. 9), suggesting that the charge movements are
not likely to reflect protein transitions associated with a rate-
limiting step. The pH and voltage dependence of the charge
movements could, however, be reasonably well described by a
standard alternating access kinetic scheme with proton bind-
ing to sites in an occluded pore (Fig. 8). In this scheme, binding
of a proton is followed by a molecule of myo-inositol, with
coupled translocation through a transporter lumen alternately
accessed from the cytoplasmic and external sides of the mem-
brane. This scheme shares features with ion channel-like mod-
els of transport in which permeant ions interact with sites in an
occluded or partially occluded pore (Läuger, 1980; Gadsby et al.
1993). The identification and further study of such charge
movements should help to resolve these processes in greater
detail.

FIG. 8. Effect of external pH on voltage dependence of charge movements. A, data points (mean 6 S.E., n 5 5) represent charge
movements measured at pH 7.5 (circles) and pH 8.5 (triangles). Smooth curves are simulations from kinetic scheme shown in the boxed region of
B, with proton binding 0.41 of the electrical distance through the membrane (K6 5 4.2 3 1029 M exp[0.41C/RT] and K2 5 6.6 3 1029 M

exp[0.41C/RT]), with a voltage-independent equilibrium constant K1 5 5 3 1023. A similar fit could be obtained assuming voltage independence
for external proton binding (K2 5 6.2 3 10210 M). Dashed line shows 2140 mV shift in the voltage midpoint at pH 8.5 predicted when K2 is the only
charge moving transition (see text).

FIG. 9. Temperature dependence of current relaxations and
steady-state current. A, currents recorded from an oocyte expressing
MIT during a voltage step from 230 mV to 2150 mV in the presence
and absence of 1 mM myo-inositol at 20 °C and 10 °C. B, superimposed
traces recorded in the absence of myo-inositol at 20 °C and 10 °C. C,
subtracted myo-inositol-induced steady-state current at 20 °C (filled
circles) and 10 °C (open circles). Data points represent the mean 6 S.E.,
n 5 3.
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